Do you want to publish a course? Click here

Ultracold polar molecules near quantum degeneracy

271   0   0.0 ( 0 )
 Added by Silke Ospelkaus
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the creation and characterization of a near quantum-degenerate gas of polar $^{40}$K-$^{87}$Rb molecules in their absolute rovibrational ground state. Starting from weakly bound heteronuclear KRb Feshbach molecules, we implement precise control of the molecular electronic, vibrational, and rotational degrees of freedom with phase-coherent laser fields. In particular, we coherently transfer these weakly bound molecules across a 125 THz frequency gap in a single step into the absolute rovibrational ground state of the electronic ground potential. Phase coherence between lasers involved in the transfer process is ensured by referencing the lasers to two single components of a phase-stabilized optical frequency comb. Using these methods, we prepare a dense gas of $4cdot10^4$ polar molecules at a temperature below 400 nK. This fermionic molecular ensemble is close to quantum degeneracy and can be characterized by a degeneracy parameter of $T/T_F=3$. We have measured the molecular polarizability in an optical dipole trap where the trap lifetime gives clues to interesting ultracold chemical processes. Given the large measured dipole moment of the KRb molecules of 0.5 Debye, the study of quantum degenerate molecular gases interacting via strong dipolar interactions is now within experimental reach.



rate research

Read More

We use microwaves to engineer repulsive long-range interactions between ultracold polar molecules. The resulting shielding suppresses various loss mechanisms and provides large elastic cross sections. Hyperfine interactions limit the shielding under realistic conditions, but a magnetic field allows suppression of the losses to below 10-14 cm3 s-1. The mechanism and optimum conditions for shielding differ substantially from those proposed by Gorshkov et al. [Phys. Rev. Lett. 101, 073201 (2008)], and do not require cancelation of the long-range dipole-dipole interaction that is vital to many applications.
87 - J. M. Sage 2005
We demonstrate the production of ultracold polar RbCs molecules in their vibronic ground state, via photoassociation of laser-cooled atoms followed by a laser-stimulated state transfer process. The resulting sample of $X ^1Sigma^+ (v=0)$ molecules has a translational temperature of $sim100 mu$K and a narrow distribution of rotational states. With the method described here it should be possible to produce samples even colder in all degrees of freedom, as well as other bi-alkali species.
We report the measurement of the anisotropic AC polarizability of ultracold polar $^{40}$K$^{87}$Rb molecules in the ground and first rotationally excited states. Theoretical analysis of the polarizability agrees well with experimental findings. Although the polarizability can vary by more than 30%, a magic angle between the laser polarization and the quantization axis is found where the polarizability of the $|N=0,m_N=0>$ and the $|N=1,m_N=0>$ states match. At this angle, rotational decoherence due to the mismatch in trapping potentials is eliminated, and we observe a sharp increase in the coherence time. This paves the way for precise spectroscopic measurements and coherent manipulations of rotational states as a tool in the creation and probing of novel quantum many-body states of polar molecules.
We have investigated Feshbach resonances in collisions of high-spin atoms such as Er and Dy with closed-shell atoms such as Sr and Yb, using coupled-channel scattering and bound-state calculations. We consider both low-anisotropy and high-anisotropy limits. In both regimes we find many resonances with a wide variety of widths. The wider resonances are suitable for tuning interatomic interactions, while some of the narrower resonances are highly suitable for magnetoassociation to form high-spin molecules. These molecules might be transferred to short-range states, where they would have large magnetic moments and electric dipole moments that can be induced with very low electric fields. The results offer the opportunity to study mixed quantum gases where one species is dipolar and the other is not, and open up important prospects for a new field of ultracold high-spin polar molecules.
We investigate the use of microwave radiation to produce a repulsive shield between pairs of ultracold polar molecules and prevent collisional losses that occur when molecular pairs reach short range. We carry out coupled-channels calculations on RbCs+RbCs and CaF+CaF collisions in microwave fields. We show that effective shielding requires predominantly circular polarization, but can still be achieved with elliptical polarization that is around 90% circular.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا