No Arabic abstract
We have developed an improved scheme for loading atoms into a magneto-optical trap (MOT) from a directed alkali metal dispenser in < 10^-10 torr ultra-high vacuum conditions. A current-driven dispenser was surrounded with a cold absorbing shroud held at < 0 C, pumping rubidium atoms not directed into the MOT. This nearly eliminates background alkali atoms and reduces the detrimental rise in pressure normally associated with these devices. The system can be well-described as a current-controlled, rapidly-switched, two-temperature thermal beam, and was used to load a MOT with 3 x 10^8 atoms.
We describe the design of a single beam, multiple species atom source in which the flux of any component can be separately adjusted. Using this design we have developed a 23Na-6Li atom source for ultracold atom experiments. The fluxes of lithium and sodium are independently tunable, allowing operation as a single 23Na or 6Li source as well as a double source with equal atomic fluxes in each component.
We demonstrate and characterize a source of Li atoms made from direct metal laser sintered titanium. The sources outgassing rate is measured to be $5 ,(2)cdot 10^{-7}$,$rm{Pa}~ rm{L}~ rm{s}^{-1}$ at a temperature $T=330,^circ$C, which optimizes the number of atoms loaded into a magneto-optical trap. The source loads $approx 10^7$ $^7$Li atoms in the trap in $approx 1$,s. The loaded source weighs 700,mg and is suitable for a number of deployable sensors based on cold atoms.
An electrically-controllable, solid-state, reversible device for sourcing and sinking alkali vapor is presented. When placed inside an alkali vapor cell, both an increase and decrease of the rubidium vapor density by a factor of two are demonstrated through laser absorption spectroscopy on 10 to 15 s time scales. The device requires low voltage (5 V), low power (<3.4 mW peak power), and low energy (<10.7 mJ per 10 s pulse). The absence of oxygen emission during operation is shown through residual gas analysis, indicating Rb is not lost through chemical reaction but rather by ion transport through the designed channel. This device is of interest for atomic physics experiments and, in particular, for portable cold-atom systems where dynamic control of alkali vapor density can enable advances in science and technology.
We present a versatile and compact electron beam driven source for alkali metal atoms, which can be implemented in cryostats. With a heat load of less than 10mW, the heat dissipation normalized to the atoms loaded into the magneto-optical Trap (MOT), is about a factor 1000 smaller than for a typical alkali metal dispenser. The measured linear scaling of the MOT loading rate with electron current observed in the experiments, indicates that electron stimulated desorption is the corresponding mechanism to release the atoms.
Aluminum monochloride (AlCl) has been proposed as a promising candidate for laser cooling to ultracold temperatures, and recent spectroscopy results support this prediction. It is challenging to produce large numbers of AlCl molecules because it is a highly reactive open-shell molecule and must be generated in situ. Here we show that pulsed-laser ablation of stable, non-toxic mixtures of Al with an alkali or alkaline earth chlorides, denoted XCln, can provide a robust and reliable source of cold AlCl molecules. Both the chemical identity of XCln and the Al:XCln molar ratio are varied, and the yield of AlCl is monitored using absorption spectroscopy in a cryogenic gas. For KCl, the production of Al and K atoms was also monitored. We model the AlCl production in the limits of nonequilibrium recombination dominated by first-encounter events. The non-equilibrium model is in agreement with the data and also reproduces the observed trend with different XCln precursors. We find that AlCl production is limited by the solid-state densities of Al and Cl atoms and the recondensation of Al atoms in the ablation plume. We suggest future directions for optimizing the production of cold AlCl molecules using laser ablation.