Do you want to publish a course? Click here

Optimizing Pulsed-Laser Ablation Production of AlCl Molecules for Laser Cooling

147   0   0.0 ( 0 )
 Added by Chen Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aluminum monochloride (AlCl) has been proposed as a promising candidate for laser cooling to ultracold temperatures, and recent spectroscopy results support this prediction. It is challenging to produce large numbers of AlCl molecules because it is a highly reactive open-shell molecule and must be generated in situ. Here we show that pulsed-laser ablation of stable, non-toxic mixtures of Al with an alkali or alkaline earth chlorides, denoted XCln, can provide a robust and reliable source of cold AlCl molecules. Both the chemical identity of XCln and the Al:XCln molar ratio are varied, and the yield of AlCl is monitored using absorption spectroscopy in a cryogenic gas. For KCl, the production of Al and K atoms was also monitored. We model the AlCl production in the limits of nonequilibrium recombination dominated by first-encounter events. The non-equilibrium model is in agreement with the data and also reproduces the observed trend with different XCln precursors. We find that AlCl production is limited by the solid-state densities of Al and Cl atoms and the recondensation of Al atoms in the ablation plume. We suggest future directions for optimizing the production of cold AlCl molecules using laser ablation.



rate research

Read More

96 - M. R. Tarbutt 2019
Recently, laser cooling methods have been extended from atoms to molecules. The complex rotational and vibrational energy level structure of molecules makes laser cooling difficult, but these difficulties have been overcome and molecules have now been cooled to a few microkelvin and trapped for several seconds. This opens many possibilities for applications in quantum science and technology, controlled chemistry, and tests of fundamental physics. This article explains how molecules can be decelerated, cooled and trapped using laser light, reviews the progress made in recent years, and outlines some future applications.
We propose a laser cooling technique in which atoms are selectively excited to a dressed metastable state whose light shift and decay rate are spatially correlated for Sisyphus cooling. The case of cooling magnetically trapped (anti)hydrogen with the 1S-2S-3P transitions using pulsed ultra violet and continuous-wave visible lasers is numerically simulated. We find a number of appealing features including rapid 3-dimensional cooling from ~1 K to recoil-limited, millikelvin temperatures, as well as suppressed spin-flip loss and manageable photoionization loss.
We introduce a scheme for deep laser cooling of molecules based on robust dark states at zero velocity. By simulating this scheme, we show it to be a widely applicable method that can reach the recoil limit or below. We demonstrate and characterise the method experimentally, reaching a temperature of 5.4(7) $mu$K. We solve a general problem of measuring low temperatures for large clouds by rotating the phase-space distribution and then directly imaging the complete velocity distribution. Using the same phase-space rotation method, we rapidly compress the cloud. Applying the cooling method a second time, we compress both the position and velocity distributions.
We demonstrate the mixing of rotational states in the ground electronic state using microwave radiation to enhance optical cycling in the molecule yttrium (II) monoxide (YO). This mixing technique is used in conjunction with a frequency modulated and chirped continuous wave laser to slow longitudinally a cryogenic buffer gas beam of YO. We generate a measurable flux of YO below 10~m/s, directly loadable into a three-dimensional magneto-optical trap. This technique opens the door for laser cooling of molecules with more complex structure.
138 - P. Zabawa , A. Wakim , A. Neukirch 2010
We demonstrate that a near-dissociation photoassociation resonance can be used to create a deeply bound molecular sample of ultracold NaCs. To probe the resulting vibrational distribution of the sample, we use a new technique that can be applied to any ultracold molecular system. We utilize a tunable pulsed dye laser to produce efficient spectroscopic scans ($sim700$ cm$^{-1}$ at a time) in which we observe the $1^{1} Sigma^{+}rightarrow 2^{1}Sigma^{+}-2^{3}Pi$ vibrational progression, as well as the dissociation limit to the Cs 6$^{2}$P$_{3/2}$ asymptote. We assign $1^{1} Sigma^{+}$$(emph{v}$ = 4, 5, 6, 11, 19) vibrational levels in our sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا