No Arabic abstract
We describe the experimental implementation of a superluminal ({it i.e.} faster than light {it in vacuo}) polarization current distribution that both oscillates and undergoes centripetal acceleration. Theoretical treatments lead one to expect that the radiation emitted from each volume element of such a polarization current will comprise a v{C}erenkov-like envelope with two sheets that meet along a cusp. The emission from the experimental machine is in good agreement with these expectations, the combined effect of the volume elements leading to tightly-defined beams of a well-defined geometry, determined by the source speed and trajectory. In addition, over a restricted range of angles, we detect the presence of cusps in the emitted radiation. These are due to the detection over a short time period (in the laboratory frame) of radiation emitted over a considerably longer period of source time. Consequently, the intensity of the radiation at these angles was observed to decline more slowly with increasing distance from the source than would the emission from a conventional antenna. The angular distribution of the emitted radiation and the properties associated with the cusps are in good {it quantitative} agreement with theoretical models of superluminal sources once the effect of reflections from the earths surface are taken into account.
Based on the relation between a plane phased array and plane waves we show that a spherical current layer or a current sphere proportional to a multipole electric field and situated in a uniform medium generates the same multipole field in all space. We calculate TE and TM multipoles inside and outside the spherical layer. The $l=1$ TM multipoles are localized at the origin with a focal spot with full width at half maximum of $0.4lambda$ in the lateral axes and $0.58lambda$ in the vertical axis. The multipole fields near the origin are prescriptions for the current distributions required to generate those multipole fields. A spherical layer can couple to a multipole source since the oscillation of the electrons in the layer due to the multipole field generates the multipole field in all space, which in turn can drive the multipole currents. Exciting a multipole in a polarizable sphere or spherical layer can couple it to another polarizable sphere or spherical layer.
In most of Seyfert-1 active galactic nucei (AGN) the optical linear continuum polarization degree is usually small (less than 1%) and the polarization position angle is nearly parallel to the AGN radio-axis. However, there are many types-1 AGNs with unexplained intermediate values for both positional angles and polarization degrees. Our explanation of polarization degree and positional angle of Seyfert-1 AGNs focuses on the reflection of non-polarized radiation from sub-parsec jets in optically thick accretion discs. The presence of a magnetic field surrounding the scattering media will induce Faraday rotation of the polarization plane that may explain the intermediate values of positional angles if there is a magnetic field component normal to the accretion disc. The Faraday rotation depolarization effect in disc diminishes the competition between polarization of the reflected radiation with the parallel component of polarization and the perpendicular polarization from internal radiation of disc (the Milne problem) in favor of polarization of reflected radiation. This effect allows us to explain the observed polarization of Seyfert-1 AGN radiation even though the jet optical luminosity is much lower than the luminosity of disc. We present the calculation of polarization degrees for a number of Seyfert-1 AGNs.
We show that the more energetic superluminal neutrinos with quadratically dispersed superluminalities delta=beta^2-1, for beta=v/c where v is the neutrino velocity, also lose significant energy to radiation to the u+e^-+e^+ final state in travelling from CERN to Gran Sasso as has been shown to occur for those with constant superluminality by Cohen and Glashow if indeed delta simeq 5times 10^{-5}. In addition, we clarify the dependence of such radiative processes on the size of the superluminality.
Advanced diffractive films may afford advantages over passive reflective surfaces for a variety space missions that use solar or laser in-space propulsion. Three cases are compared: Sun-facing diffractive sails, Littrow diffraction configurations, and conventional reflective sails. A simple Earth-to-Mars orbit transfer at a constant attitude with respect to the sun-line finds no penalty for transparent diffractive sails. Advantages of the latter approach include actively controlled metasails and the reuse of photons.
We show experimentally that a continuous, linear, dielectric antenna in which a superluminal polarization-current distribution accelerates can be used to transmit a broadband signal that is reproduced in a comprehensible form at a chosen target distance and angle. The requirement for this exact correspondence between broadcast and received signals is that each moving point in the polarization-current distribution approaches the target at the speed of light at all times during its transit along the antenna. This results in a one-to-one correspondence between the time at which each point on the moving polarization current enters the antenna and the time at which {it all} of the radiation emitted by this particular point during its transit through the antenna arrives simultaneously at the target. This has the effect of reproducing the desired time dependence of the original broadcast signal. For other observer/detector positions, the time dependence of the signal is scrambled, due to the non-trivial relationship between emission (retarded) time and reception time. This technique represents a contrast to conventional radio transmission methods; in most examples of the latter, signals are broadcast with little or no directivity, selectivity of reception being achieved through the use of narrow frequency bands. In place of this, the current paper uses a spread of frequencies to transmit information to a particular location; the signal is weaker and has a scrambled time dependence elsewhere. We point out the possible relevance of this mechanism to 5G neighbourhood networks. This work also constitutes a ground-based astrophysics experiment that gives strong clues towards the emission mechanism of pulsars.