Do you want to publish a course? Click here

New mechanism of radiation polarization in Seyfert-1 AGNs

80   0   0.0 ( 0 )
 Added by Mikhail Piotrovich
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In most of Seyfert-1 active galactic nucei (AGN) the optical linear continuum polarization degree is usually small (less than 1%) and the polarization position angle is nearly parallel to the AGN radio-axis. However, there are many types-1 AGNs with unexplained intermediate values for both positional angles and polarization degrees. Our explanation of polarization degree and positional angle of Seyfert-1 AGNs focuses on the reflection of non-polarized radiation from sub-parsec jets in optically thick accretion discs. The presence of a magnetic field surrounding the scattering media will induce Faraday rotation of the polarization plane that may explain the intermediate values of positional angles if there is a magnetic field component normal to the accretion disc. The Faraday rotation depolarization effect in disc diminishes the competition between polarization of the reflected radiation with the parallel component of polarization and the perpendicular polarization from internal radiation of disc (the Milne problem) in favor of polarization of reflected radiation. This effect allows us to explain the observed polarization of Seyfert-1 AGN radiation even though the jet optical luminosity is much lower than the luminosity of disc. We present the calculation of polarization degrees for a number of Seyfert-1 AGNs.



rate research

Read More

The determination of the size and geometry of the broad line region (BLR) in active galactic nuclei is one of the major ingredients for determining the mass of the accreting black hole. This can be done by determining the delay between the optical continuum and the flux reprocessed by the BLR, in particular via the emission lines. We propose here that the delay between polarized and unpolarized light can also be used in much the same way to constrain the size of the BLR; we check that meaningful results can be expected from observations using this technique. We use our code STOKES for performing polarized radiative transfer simulations. We determine the response of the central source environment (broad line region, dust torus, polar wind) to fluctuations of the central source that are randomly generated; we then calculate the cross correlation between the simulated polarized flux and the total flux to estimate the time delay that would be provided by observations using the same method. We find that the broad line region is the main contributor to the delay between the polarized flux and the total flux; this delay is independent on the observation wavelength. This validates the use of polarized radiation in the optical/UV band to estimate the geometrical properties of the broad line region in type I AGNs, in which the viewing angle is close to pole-on and the BLR is not obscured by the dust torus.
139 - J. L. Richards 2014
Several narrow-line Seyfert 1 galaxies (NLS1s) have now been detected in gamma rays, providing firm evidence that at least some of this class of active galactic nuclei (AGN) produce relativistic jets. The presence of jets in NLS1s is surprising, as these sources are typified by comparatively small black hole masses and near- or super-Eddington accretion rates. This challenges the current understanding of the conditions necessary for jet production. Comparing the properties of the jets in NLS1s with those in more familiar jetted systems is thus essential to improve jet production models. We present early results from our campaign to monitor the kinematics and polarization of the parsec-scale jets in a sample of 15 NLS1s through multifrequency observations with the Very Long Baseline Array. These observations are complemented by fast-cadence 15 GHz monitoring with the Owens Valley Radio Observatory 40m telescope and optical spectroscopic monitoring with with the 2m class telescope at the Guillermo Haro Astrophysics Observatory in Cananea, Mexico.
Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the H$beta$ broad emission line < 2000 km/s and the flux ratio of [O III] to H$beta$ < 3. Their properties are not well understood since only a few NLSy1 galaxies were known earlier. We have studied various properties of NLSy1 galaxies using an enlarged sample and compared them with the conventional broad-line Seyfert 1 (BLSy1) galaxies. Both the sample of sources have z $le$ 0.8 and their optical spectra from SDSS-DR12 that are used to derive various physical parameters have a median signal to noise (S/N) ratio >10 per pixel. Strong correlations between the H$beta$ and H$alpha$ emission lines are found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of H$beta$, H$alpha$ and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the $R_{4570}$ - $xi_{Edd}$ diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R > 10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 $pm$ 0.9) than BLSy1 galaxies (2.4 $pm$ 0.8). It is anti-correlated with the H$beta$ width but correlated with the Fe II strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.
We studied optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z<0.8 to investigate any differences in their OV properties. Using archival optical V-band light curves from the Catalina Real Time Transient Survey that span 5-9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude than radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe II strength but correlated with the width of the H-beta line. The well-known anti-correlation of variability-luminosity and the variability-Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power suggesting jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.
81 - K. E. Gabanyi , A. Moor , S. Frey 2018
Most of the radio-loud narrow-line Seyfert 1 (NLS1) galaxies resemble compact steep-spectrum sources. However, the extremely radio-loud ones show blazar-like characteristics, like flat radio spectra, compact radio cores, substantial variability and high brightness temperatures. These objects are thought to be similar to blazars as they possess relativistic jets seen at small angle to the line of sight. This claim has been further supported by the Fermi satellite discovery of gamma-ray emission from a handful of these sources. Using the Wide-Field Infrared Survey Explorer (WISE) data, we analyzed the mid-infrared variability characteristics of $42$ radio-loud NLS1 at $3.4$ and $4.6,mu$m. We found that $27$ out of the studied $42$ sources showed variability in at least one of the two infrared bands. In some cases, significant changes in the infrared colors can alter the location of the source in the WISE color-color diagram which might lead to different classification. More than $60$% of the variable sources also showed variability within a $1-1.5$ day interval. Such short time scales argue for a compact emission region like those associated with the jets. This connection is further strengthened by the fact that the brightest $gamma$-ray emitters of the sample ($6$ sources), all showed short time scale infrared variability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا