Do you want to publish a course? Click here

Estimates of Radiation by Superluminal Neutrinos

153   0   0.0 ( 0 )
 Added by Bennie F. L. Ward
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We show that the more energetic superluminal neutrinos with quadratically dispersed superluminalities delta=beta^2-1, for beta=v/c where v is the neutrino velocity, also lose significant energy to radiation to the u+e^-+e^+ final state in travelling from CERN to Gran Sasso as has been shown to occur for those with constant superluminality by Cohen and Glashow if indeed delta simeq 5times 10^{-5}. In addition, we clarify the dependence of such radiative processes on the size of the superluminality.



rate research

Read More

We calculate the transition radiation process $ u to u gamma$ at an interface of two media. The neutrinos are taken to be with only standard-model couplings. The medium fulfills the dual purpose of inducing an effective neutrino-photon vertex and of modifying the photon dispersion relation. The transition radiation occurs when at least one of those quantities have different values in different media. The neutrino mass is ignored due to its negligible contribution. We present a result for the probability of the transition radiation which is both accurate and analytic. For $E_ u =1$ MeV neutrino crossing polyethylene-vacuum interface the transition radiation probability is about $10^{-39}$ and the energy intensity is about $10^{-34}$ eV. At the surface of the neutron stars the transition radiation probability may be $sim 10^{-20}$. Our result on three orders of magnitude is larger than the results of previous calculations.
The OPERA collaboration has claimed evidence of superluminal { u}{_mu} propagation between CERN and the LNGS. Cohen and Glashow argued that such neutrinos should lose energy by producing photons and e+e- pairs, through Z0 mediated processes analogous to Cherenkov radiation. In terms of the parameter delta=(v^2_nu-v^2_c)/v^2_c, the OPERA result implies delta = 5 x 10^-5. For this value of delta a very significant deformation of the neutrino energy spectrum and an abundant production of photons and e+e- pairs should be observed at LNGS. We present an analysis based on the 2010 and part of the 2011 data sets from the ICARUS experiment, located at Gran Sasso National Laboratory and using the same neutrino beam from CERN. We find that the rates and deposited energy distributions of neutrino events in ICARUS agree with the expectations for an unperturbed spectrum of the CERN neutrino beam. Our results therefore refute a superluminal interpretation of the OPERA result according to the Cohen and Glashow prediction for a weak current analog to Cherenkov radiation. In particular no superluminal Cherenkov like e+e- pair or gamma emission event has been directly observed inside the fiducial volume of the bubble chamber like ICARUS TPC-LAr detector, setting the much stricter limit of delta < 2.5 10^-8 at the 90% confidence level, comparable with the one due to the observations from the SN1987A.
From the data release of OPERA - CNGS experiment, and publicly announced on 23 September 2011, we cast a phenomenological model based on a Majorana neutrino state carrying a fictitious imaginary mass term, already discussed by Majorana in 1932. This mass term can be induced by the interaction with the matter of the Earths crust during the 735 Km travel. Within the experimental errors, we prove that the model fits with OPERA, MINOS and supernova SN1987a data. Possible violations to Lorentz invariance due to quantum gravity effects have been considered.
We discuss the transition radiation process $ u to u gamma$ at an interface of two media. The medium fulfills the dual purpose of inducing an effective neutrino-photon vertex and of modifying the photon dispersion relation. The transition radiation occurs when at least one of those quantities have different values in different media. We present a result for the probability of the transition radiation which is both accurate and analytic. For $E_ u =1$MeV neutrino crossing polyethylene-vacuum interface the transition radiation probability is about $10^{-39}$ and the energy intensity (deposition) is about $10^{-34}$eV. At the surface of the neutron stars the transition radiation probability may be $sim 10^{-20}$. Our result on three orders of magnitude is larger than the results of previous calculations.}
In recent experiments conducted by the OPERA collaboration, researchers claimed the observation of neutrinos propagating faster than the light speed in vacuum. If correct, their results raise several issues concerning the special theory of relativity and the standard model of fundamental particles. Here, the physical consequences of superluminal neutrinos described by a tachyonic Dirac lagrangian, are explored within the standard model of electroweak interactions. If neutrino tachyonic behavior is allowed, it could provide a simple explanation for the parity violation in weak interactions and why electroweak theory has a chiral aspect, leading to invariance under a $SU_{L}(2)times U_{Y}(1)$ gauge group. Right-handed neutrino becomes sterile and decoupled from the other particles quite naturally.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا