Do you want to publish a course? Click here

Black Body Radiation Shift of the 133Cs Hyperfine Transition Frequency

78   0   0.0 ( 0 )
 Added by Davide Calonico
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the theoretical evaluations of the static scalar polarizability of the 133Cs ground state and of the black body radiation shift induced on the transition frequency between the two hyperfine levels with m_F = 0. This shift is of fundamental importance in the evaluation of the accuracy of the primary frequency standards based on atomic fountains and employed in the realization of the SI second in the International Atomic Time (TAI) scale at the level of 1e-15. Our computed value for the polarizability is alpha_0=6.600(16)e-39 Cm^2/V in agreement at the level of 1e-3 with recent theoretical and experimental values. As regards the black body radiation shift we .nd for the relative hyper.ne transition frequency beta=-1.49 (7)e-14 at T = 300 K in agreement with frequency measurements reported by our group and by Bauch and Schroder [Phys. Rev. Lett. 78, 622, (1997)]. This value is lower by 2e-15 than that obtained with measurements based on the dc Stark shift and than the value commonly accepted up to now.



rate research

Read More

299 - F. Levi , D. Calonico , L. Lorini 2003
We used a Cs atomic fountain frequency standard to measure the Stark shift on the ground state hyperfine transiton frequency in cesium (9.2 GHz) due to the electric field generated by the blackbody radiation. The measures relative shift at 300 K is -1.43(11)e-14 and agrees with our theoretical evaluation -1.49(07)e-14. This value differs from the currently accepted one -1.69(04)e-14. The difference has a significant implication on the accuracy of frequency standards, in clocks comparison, and in a variety of high precision physics tests such as the time stability of fundamental constants.
349 - Yongjun Cheng , J. Mitroy 2013
The blackbody radiation shift of the Ga$^+$ $4s^2 ^1S^e_0 to 4s4p ^3P^o_0$ clock transition is computed to be $-$$0.0140 pm 0.0048$ Hz at 300 K. The small shift is consistent with the blackbody shifts of the clock transitions of other group III ions which are of a similar size. The polarizabilities of the Ga$^+$ $4s^2 ^1S^e_0$, $4s4p ^3P^o_0$, and $4s4p ^1P^o_1$ states were computed using the configuration interaction method with an underlying semi-empirical core potential. A byproduct of the analysis involved large scale calculations of the low lying spectrum and oscillator strengths of the Ga$^{2+}$ ion.
We study a wide range of neutral atoms and ions suitable for ultra-precise atomic optical clocks with naturally suppressed black body radiation shift of clock transition frequency. Calculations show that scalar polarizabilities of clock states cancel each other for at least one order of magnitude for considered systems. Results for calculations of frequencies, quadrupole moments of the states, clock transition amplitudes and natural widths of upper clock states are presented.
440 - Yongjun Cheng , J. Mitroy 2012
A calculation of the blackbody radiation shift of the B$^+$ clock transition is performed. The polarizabilities of the B$^+$ $2s^2$ $^1$S$^e$, $2s2p$ $^1$P$^o$, and $2s2p$ $^3$P$^o$ states are computed using the configuration interaction method with an underlying semi-empirical core potential. The recommended dipole polarizabilities are 9.64(3) $a_0^3$, 7.78(3) $a_0^3$ and 16.55(5) $a_0^3$ respectively. The derived frequency shift for the $2s^2$ $^1$S$^e$ $to$ $2s2p$ $^3$P$^o_0$ transition at 300 K is 0.0160(5) Hz. The dipole polarizabilities agree with an earlier relativistic calculation (Safronova {em et al.} Phys. Rev. Lett. {bf 107} 143006 (2011)) to better than 0.2%. Quadrupole and octupole polarizabilities and non-adiabatic multipole polarizabilities are also reported.
Energy levels of 30 low-lying states of Lu2+ and allowed electric-dipole matrix elements between these states are evaluated using a relativistic all-order method in which all single, double and partial triple excitations of Dirac-Fock wave functions are included to all orders of perturbation theory. Matrix elements are critically evaluated for their accuracy and recommended values of the matrix elements are given together with uncertainty estimates. Line strengths, transition rates and lifetimes of the metastable 5d(3/2) and 5d(5/2) states are calculated. Recommended values are given for static polarizabilities of the 6s, 5d and 6p states and tensor polarizabilities of the 5d and 6p(3/2) states. Uncertainties of the polarizability values are estimated in all cases. The blackbody radiation shift of the 6s(1/2)-5d(5/2) transition frequency of the Lu2+ ion is calculated with the aid of the recommended scalar polarizabilities of the 6s(1/2) and 5d(5/2) states. Finally, A and B hyperfine constants are determined for states of 175Lu2+ with n <= 9. This work provides recommended values of transition matrix elements, polarizabilities and hyperfine constants of Lu2+, critically evaluated for accuracy, for benchmark tests of high-precision theoretical methodology and planning of future experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا