Do you want to publish a course? Click here

Measurement of the Blackbody Radiation Shift of the 133Cs Hyperfine Transition in an Atomic Fountain

300   0   0.0 ( 0 )
 Added by Davide Calonico
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We used a Cs atomic fountain frequency standard to measure the Stark shift on the ground state hyperfine transiton frequency in cesium (9.2 GHz) due to the electric field generated by the blackbody radiation. The measures relative shift at 300 K is -1.43(11)e-14 and agrees with our theoretical evaluation -1.49(07)e-14. This value differs from the currently accepted one -1.69(04)e-14. The difference has a significant implication on the accuracy of frequency standards, in clocks comparison, and in a variety of high precision physics tests such as the time stability of fundamental constants.



rate research

Read More

We report the theoretical evaluations of the static scalar polarizability of the 133Cs ground state and of the black body radiation shift induced on the transition frequency between the two hyperfine levels with m_F = 0. This shift is of fundamental importance in the evaluation of the accuracy of the primary frequency standards based on atomic fountains and employed in the realization of the SI second in the International Atomic Time (TAI) scale at the level of 1e-15. Our computed value for the polarizability is alpha_0=6.600(16)e-39 Cm^2/V in agreement at the level of 1e-3 with recent theoretical and experimental values. As regards the black body radiation shift we .nd for the relative hyper.ne transition frequency beta=-1.49 (7)e-14 at T = 300 K in agreement with frequency measurements reported by our group and by Bauch and Schroder [Phys. Rev. Lett. 78, 622, (1997)]. This value is lower by 2e-15 than that obtained with measurements based on the dc Stark shift and than the value commonly accepted up to now.
We evaluated the static and dynamic polarizabilities of the 5s^2 ^1S_0 and 5s5p ^3P_0^o states of Sr using the high-precision relativistic configuration interaction + all-order method. Our calculation explains the discrepancy between the recent experimental 5s^2 ^1S_0 - 5s5p ^3P_0^o dc Stark shift measurement Delta alpha = 247.374(7) a.u. [Middelmann et. al, arXiv:1208.2848 (2012)] and the earlier theoretical result of 261(4) a.u. [Porsev and Derevianko, Phys. Rev. A 74, 020502R (2006)]. Our present value of 247.5 a.u. is in excellent agreement with the experimental result. We also evaluated the dynamic correction to the BBR shift with 1 % uncertainty; -0.1492(16) Hz. The dynamic correction to the BBR shift is unusually large in the case of Sr (7 %) and it enters significantly into the uncertainty budget of the Sr optical lattice clock. We suggest future experiments that could further reduce the present uncertainties.
471 - Yongjun Cheng , J. Mitroy 2012
A calculation of the blackbody radiation shift of the B$^+$ clock transition is performed. The polarizabilities of the B$^+$ $2s^2$ $^1$S$^e$, $2s2p$ $^1$P$^o$, and $2s2p$ $^3$P$^o$ states are computed using the configuration interaction method with an underlying semi-empirical core potential. The recommended dipole polarizabilities are 9.64(3) $a_0^3$, 7.78(3) $a_0^3$ and 16.55(5) $a_0^3$ respectively. The derived frequency shift for the $2s^2$ $^1$S$^e$ $to$ $2s2p$ $^3$P$^o_0$ transition at 300 K is 0.0160(5) Hz. The dipole polarizabilities agree with an earlier relativistic calculation (Safronova {em et al.} Phys. Rev. Lett. {bf 107} 143006 (2011)) to better than 0.2%. Quadrupole and octupole polarizabilities and non-adiabatic multipole polarizabilities are also reported.
The Stark shift of the ytterbium optical clock transition due to room temperature blackbody radiation is dominated by a static Stark effect, which was recently measured to high accuracy [J. A. Sherman et al., Phys. Rev. Lett. 108, 153002 (2012)]. However, room temperature operation of the clock at 10^{-18} inaccuracy requires a dynamic correction to this static approximation. This dynamic correction largely depends on a single electric dipole matrix element for which theoretically and experimentally derived values disagree significantly. We determine this important matrix element by two independent methods, which yield consistent values. Along with precise radiative lifetimes of 6s6p 3P1 and 5d6s 3D1, we report the clocks blackbody radiation shift to 0.05% precision.
We measure the dynamic differential scalar polarizabilities at 10.6 $mu$m for two candidate clock transitions in $^{176}mathrm{Lu}^+$. The fractional black body radiation (BBR) shifts at 300 K for the $^1S_0 leftrightarrow {^3D_1}$ and $^1S_0 leftrightarrow {^3D_2}$ transitions are evaluated to be $-1.36,(9) times 10^{-18}$ and $2.70 ,(21) times10^{-17}$, respectively. The former is the lowest of any established optical atomic clock.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا