Do you want to publish a course? Click here

Illustrating Dynamical Symmetries in Classical Mechanics: The Laplace-Runge-Lenz Vector Revisited

42   0   0.0 ( 0 )
 Added by Will Loinaz
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

The inverse square force law admits a conserved vector that lies in the plane of motion. This vector has been associated with the names of Laplace, Runge, and Lenz, among others. Many workers have explored aspects of the symmetry and degeneracy associated with this vector and with analogous dynamical symmetris. We define a conserved dynamical variable $alpha$ that characterizes the orientation of the orbit in two-dimensional configuration space for the Kepler problem and an analogous variable $beta$ for the isotropic harmonics oscillator. This orbit orientation variable is canonically conjugate to the angular momentum component normal to the plane of motion. We explore the canoncial one-parameter group of transformations generated by $alpha (beta).$ Because we have an obvious pair of conserved canonically conjugate variables, it is desirable to us them as a coordinate-momentum pair. In terms of these phase space coordinates, the form of the Hamiltonian is nearly trivial because neither member of the pair can occur explicitly in the Hamiltonian. From these considerations we gain a simple picture of the dynamics in phase space. The procedure we use is in the spirit of the Hamilton-Jacobi method.



rate research

Read More

We briefly show how classical mechanics can be rederived and better understood as a consequence of three assumptions: infinitesimal reducibility, deterministic and reversible evolution, and kinematic equivalence.
We analyze the relation of the notion of a pluri-Lagrangian system, which recently emerged in the theory of integrable systems, to the classical notion of variational symmetry, due to E. Noether. We treat classical mechanical systems and show that, for any Lagrangian system with $m$ commuting variational symmetries, one can construct a pluri-Lagrangian 1-form in the $(m+1)$-dimensional time, whose multi-time Euler-Lagrange equations coincide with the original system supplied with $m$ commuting evolutionary flows corresponding to the variational symmetries. We also give a Hamiltonian counterpart of this construction, leading, for any system of commuting Hamiltonian flows, to a pluri-Lagrangian 1-form with coefficients depending on functions in the phase space.
182 - Fu-Lin Zhang , Ci Song , 2008
The two-dimensional Dirac Hamiltonian with equal scalar and vector potentials has been proved commuting with the deformed orbital angular momentum $L$. When the potential takes the Coulomb form, the system has an SO(3) symmetry, and similarly the harmonic oscillator potential possesses an SU(2) symmetry. The generators of the symmetric groups are derived for these two systems separately. The corresponding energy spectra are yielded naturally from the Casimir operators. Their non-relativistic limits are also discussed.
The procedure commonly used in textbooks for determining the eigenvalues and eigenstates for a particle in an attractive Coulomb potential is not symmetric in the way the boundary conditions at $r=0$ and $r rightarrow infty$ are considered. We highlight this fact by solving a model for the Coulomb potential with a cutoff (representing the finite extent of the nucleus); in the limit that the cutoff is reduced to zero we recover the standard result, albeit in a non-standard way. This example is used to emphasize that a more consistent approach to solving the Coulomb problem in quantum mechanics requires an examination of the non-standard solution. The end result is, of course, the same.
The fact that the capacitance coefficients for a set of conductors are geometrical factors is derived in most electricity and magnetism textbooks. We present an alternative derivation based on Laplaces equation that is accessible for an intermediate course on electricity and magnetism. The properties of Laplaces equation permits to prove many properties of the capacitance matrix. Some examples are given to illustrate the usefulness of such properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا