The two-dimensional Dirac Hamiltonian with equal scalar and vector potentials has been proved commuting with the deformed orbital angular momentum $L$. When the potential takes the Coulomb form, the system has an SO(3) symmetry, and similarly the harmonic oscillator potential possesses an SU(2) symmetry. The generators of the symmetric groups are derived for these two systems separately. The corresponding energy spectra are yielded naturally from the Casimir operators. Their non-relativistic limits are also discussed.
This article is a pedagogical introduction to relativistic quantum mechanics of the free Majorana particle. This relatively simple theory differs from the well-known quantum mechanics of the Dirac particle in several important aspects. We present its three equivalent formulations. Next, so called axial momentum observable is introduced, and general solution of the Dirac equation is discussed in terms of eigenfunctions of that operator. Pertinent irreducible representations of the Poincare group are discussed. Finally, we show that in the case of massless Majorana particle the quantum mechanics can be reformulated as a spinorial gauge theory.
The dynamical symmetries of the two-dimensional Klein-Gordon equations with equal scalar and vector potentials (ESVP) are studied. The dynamical symmetries are considered in the plane and the sphere respectively. The generators of the SO(3) group corresponding to the Coulomb potential, and the SU(2) group corresponding to the harmonic oscillator potential are derived. Moreover, the generators in the sphere construct the Higgs algebra. With the help of the Casimir operators, the energy levels of the Klein-Gordon systems are yielded naturally.
The problem of building supersymmetry in the quantum mechanics of two Coulombian centers of force is analyzed. It is shown that there are essentially two ways of proceeding. The spectral problems of the SUSY (scalar) Hamiltonians are quite similar and become tantamount to solving entangled families of Razavy and Whittaker-Hill equations in the first approach. When the two centers have the same strength, the Whittaker-Hill equations reduce to Mathieu equations. In the second approach, the spectral problems are much more difficult to solve but one can still find the zero-energy ground states.
We discuss the scattering of a quantum particle by two independent successive point interactions in one dimension. The parameter space for two point interactions is given by $U(2)times U(2)$, which is described by eight real parameters. We perform an analysis of perfect resonant transmission on the whole parameter space. By investigating the effects of the two point interactions on the scattering matrix of plane wave, we find the condition under which perfect resonant transmission occurs. We also provide the physical interpretation of the resonance condition.
Spatial symmetries of quantum systems leads to important effects in spectroscopy, such as selection rules and dark states. Motivated by the increasing strength of light-matter interaction achieved in recent experiments, we investigate a set of dynamically-generalized symmetries for quantum systems, which are subject to a strong periodic driving. Based on Floquet response theory, we study rotational, particle-hole, chiral and time-reversal symmetries and their signatures in spectroscopy, including symmetry-protected dark states (spDS), a Floquet band selection rule (FBSR), and symmetry-induced transparency (siT). Specifically, a dynamical rotational symmetry establishes dark state conditions, as well as selection rules for inelastic light scattering processes; a particle-hole symmetry introduces dark states for symmetry related Floquet states and also a transparency effect at quasienergy crossings; chiral symmetry and time-reversal symmetry alone do not imply dark state conditions, but can be combined to the particle-hole symmetry. Our predictions reveal new physical phenomena when a quantum system reaches the strong light-matter coupling regime, important for superconducting qubits, atoms and molecules in optical or plasmonic field cavities, and optomechanical systems.