Do you want to publish a course? Click here

The Timing Synchronization System at Jefferson Lab

100   0   0.0 ( 0 )
 Added by Marie Keesee
 Publication date 2001
  fields Physics
and research's language is English
 Authors M. Keesee




Ask ChatGPT about the research

This paper presents the requirements and design of a Timing Synchronization System (TSS) for the Continuous Electron Beam Accelerator Facility (CEBAF) control system at Thomas Jefferson National Accelerator Facility. A clock module has been designed which resides in a VME crate. The clock module can be a communications master or a slave depending on its configuration, which is software and jumper selectable. As a master, the clock module sends out messages in response to an external synchronization signal over a serial fiber optic line. As a slave, it receives the messages and interrupts an associated computer in its VME crate. The application that motivated the development of the TSS, the Accelerator 30 Hz Measurement System, will be described. Operational experience with the TSS will also be discussed.



rate research

Read More

141 - Jay Benesch , Yves Roblin 2021
The Continuous Electron Beam Accelerator Facility (CEBAF) was built with a thermionic electron source and the three original experimental hall lines reflected this. A few years after beam delivery began a parity violation experiment was approved and two polarimeters were installed in the Hall A beam line without consultation with the accelerator physics group. The beam raster system was placed after the new Compton polarimeter, before one accelerator quadrupole and four quadrupoles in the new Moller polarimeter. It was very difficult to meet experimental requirements on envelope functions and raster shape with this arrangement so a member of the accelerator physics group had a sixth quadrupole installed downstream of the Moller polarimeter. All of the parity experiments in Hall A have been run with this still-unsatisfactory configuration. The MOLLER experiment is predicated on achieving a 2% error on a 32 ppb asymmetry. Beam line changes are required to meet the systematic error budget. This paper documents the existing beam line, an interim change which can be accomplished during a annual maintenance down, and the final configuration for MOLLER and subsequent experiments.
186 - James Beacham 2013
APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson ($A^prime$) with sub-GeV mass and coupling to ordinary matter of $g^prime sim (10^{-6} - 10^{-2}) e$. Electrons impinge upon a fixed target of high-Z material. An $A^prime$ is produced via a process analogous to photon bremsstrahlung, decaying to an $e^+ e^-$ pair. A test run was held in July of 2010, covering $m_{A^prime}$ = 175 to 250 MeV and couplings $g^prime/e ; textgreater ; 10^{-3}$. A full run is approved and will cover $m_{A^prime} sim$ 65 to 525 MeV and $g^prime/e ; textgreater ; 2.3 times10^{-4}$.
74 - Latifa Elouadrhiri 2002
Recent results from the Deeply Virtual Compton Scattering (DVCS) program at Jefferson Lab will be presented. Approved dedicated DVCS experiments at 6 GeV and plans for the 12 GeV upgrade will be discussed.
Positron beams, both polarized and unpolarized, are identified as essential ingredients for the experimental program at the next generation of lepton accelerators. In the context of the Hadronic Physics program at the Jefferson Laboratory (JLab), positron beams are complementary, even essential, tools for a precise understanding of the electromagnetic structure of the nucleon, in both the elastic and the deep-inelastic regimes. For instance, elastic scattering of (un)polarized electrons and positrons off the nucleon allows for a model independent determination of the electromagnetic form factors of the nucleon. Also, the deeply virtual Compton scattering of (un)polarized electrons and positrons allows us to separate unambiguously the different contributions to the cross section of the lepto-production of photons, enabling an accurate determination of the nucleon Generalized Parton Distributions (GPDs), and providing an access to its Gravitational Form Factors. Furthermore, positron beams offer the possibility of alternative tests of the Standard Model through the search of a dark photon or the precise measurement of electroweak couplings. This letter proposes to develop an experimental positron program at JLab to perform unique high impact measurements with respect to the two-photon exchange problem, the determination of the proton and the neutron GPDs, and the search for the $A^{prime}$ dark photon.
158 - Justin R. Stevens 2014
A new tagged photon beam facility is being constructed in experimental Hall-D at Jefferson Lab as a part of the 12 GeV upgrade program. The 9 GeV linearly-polarized photon beam will be produced via coherent Bremsstrahlung using the CEBAF electron beam, incident on a diamond radiator. The GlueX experiment in Hall-D will use this photon beam to search for and study the pattern of gluonic excitations in the meson spectrum produced through photoproduction reactions with a liquid hydrogen target. Recent lattice QCD calculations predict a rich spectrum of hybrid mesons, that are formed by exciting the gluonic field that couples the quarks. A subset of these hybrid mesons are predicted to have exotic quantum numbers which cannot be formed from a simple $qbar{q}$ pair, and thus provide an ideal laboratory for testing QCD in the confinement regime. In these proceedings the status of the construction and installation of the GlueX detector will be presented, in addition to simulation results for some reactions of interest in hybrid meson searches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا