Do you want to publish a course? Click here

Gluonic Excitations and Experimental Hall-D at Jefferson Lab

157   0   0.0 ( 0 )
 Added by Justin Stevens
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

A new tagged photon beam facility is being constructed in experimental Hall-D at Jefferson Lab as a part of the 12 GeV upgrade program. The 9 GeV linearly-polarized photon beam will be produced via coherent Bremsstrahlung using the CEBAF electron beam, incident on a diamond radiator. The GlueX experiment in Hall-D will use this photon beam to search for and study the pattern of gluonic excitations in the meson spectrum produced through photoproduction reactions with a liquid hydrogen target. Recent lattice QCD calculations predict a rich spectrum of hybrid mesons, that are formed by exciting the gluonic field that couples the quarks. A subset of these hybrid mesons are predicted to have exotic quantum numbers which cannot be formed from a simple $qbar{q}$ pair, and thus provide an ideal laboratory for testing QCD in the confinement regime. In these proceedings the status of the construction and installation of the GlueX detector will be presented, in addition to simulation results for some reactions of interest in hybrid meson searches.



rate research

Read More

The experiment E94-107 in Hall A at Jefferson Lab started a systematic study of high resolution hypernuclear spectroscopy in the 0p-shell region of nuclei such as the hypernuclei produced in electroproduction on 9Be, 12C and 16O targets. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a ring-imaging Cherenkov detector were added to the Hall A standard equipment. The high-quality beam, the good spectrometers and the new experimental devices allowed us to obtain very good results. For the first time, measurable strength with sub-MeV energy resolution was observed for the core-excited states of Lambda 12B. A high-quality Lambda 16N hypernuclear spectrum was likewise obtained. A first measurement of the Lambda binding energy for Lambda 16N, calibrated against the elementary reaction on hydrogen, was obtained with high precision, 13.76 +/- 0.16 MeV. Similarly, the first Lambda 9Li hypernuclear spectrum shows general agreement with theory (distorted-wave impulse approximation with the SLA and BS3 electroproduction models and shell-model wave functions). Some disagreement exists with respect to the relative strength of the states making up the first multiplet. A Lambda separation energy of 8.36 MeV was obtained, in agreement with previous results. It has been shown that the electroproduction of hypernuclei can provide information complementary to that obtained with hadronic probes and the gamma-ray spectroscopy technique.
Positron beams, both polarized and unpolarized, are identified as essential ingredients for the experimental programs at the next generation of lepton accelerators. In the context of the hadronic physics program at Jefferson Lab (JLab), positron beams are complementary, even essential, tools for a precise understanding of the electromagnetic structure of nucleons and nuclei, in both the elastic and deep-inelastic regimes. For instance, elastic scattering of polarized and unpolarized electrons and positrons from the nucleon enables a model independent determination of its electromagnetic form factors. Also, the deeply-virtual scattering of polarized and unpolarized electrons and positrons allows unambiguous separation of the different contributions to the cross section of the lepto-production of photons and of lepton-pairs, enabling an accurate determination of the nucleons and nuclei generalized parton distributions, and providing an access to the gravitational form factors. Furthermore, positron beams offer the possibility of alternative tests of the Standard Model of particle physics through the search of a dark photon, the precise measurement of electroweak couplings, and the investigation of charged lepton flavor violation. This document discusses the perspectives of an experimental program with high duty-cycle positron beams at JLab.
140 - A. Afanasev , I. Albayrak , S. Ali 2021
We propose to use the High Momentum Spectrometer of Hall C combined with the Neutral Particle Spectrometer (NPS) to perform high precision measurements of the Deeply Virtual Compton Scattering (DVCS) cross section using a beam of positrons. The combination of measurements with oppositely charged incident beams is the only unambiguous way to disentangle the contribution of the DVCS$^2$ term in the photon electroproduction cross section from its interference with the Bethe-Heitler amplitude. This provides a stronger way to constrain the Generalized Parton Distributions of the nucleon. A wide range of kinematics accessible with an 11 GeV beam off an unpolarized proton target will be covered. The $Q^2-$dependence of each contribution will be measured independently.
97 - J. Maxwell , D. Crabb , D. Day 2018
We renew our intent to submit a proposal to perform a search for a non-zero value of the unmeasured hadronic double helicity flip structure function $Delta(x,Q^2)$, predicted to be sensitive to gluons in the nucleus. This would be performed with an unpolarized electron beam and transversely polarized, spin-1, nuclear target. This structure function was first identified by Jaffe and Manohar in 1989 as a clear signature for exotic gluonic components in the target, and a recent lattice QCD result by our collaborators has prompted renewed interest in the topic. An inclusive search with deep inelastic scattering, below $x$ of 0.3, via single spin tensor asymmetries may be feasible using the CEBAF 12 GeV electron beam and JLab/UVa solid polarized target, and would represent the first experimental exploration of this quantity.
Positron beams, both polarized and unpolarized, are identified as essential ingredients for the experimental program at the next generation of lepton accelerators. In the context of the Hadronic Physics program at the Jefferson Laboratory (JLab), positron beams are complementary, even essential, tools for a precise understanding of the electromagnetic structure of the nucleon, in both the elastic and the deep-inelastic regimes. For instance, elastic scattering of (un)polarized electrons and positrons off the nucleon allows for a model independent determination of the electromagnetic form factors of the nucleon. Also, the deeply virtual Compton scattering of (un)polarized electrons and positrons allows us to separate unambiguously the different contributions to the cross section of the lepto-production of photons, enabling an accurate determination of the nucleon Generalized Parton Distributions (GPDs), and providing an access to its Gravitational Form Factors. Furthermore, positron beams offer the possibility of alternative tests of the Standard Model through the search of a dark photon or the precise measurement of electroweak couplings. This letter proposes to develop an experimental positron program at JLab to perform unique high impact measurements with respect to the two-photon exchange problem, the determination of the proton and the neutron GPDs, and the search for the $A^{prime}$ dark photon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا