Do you want to publish a course? Click here

Deeply Virtual Compton Scattering at Jefferson Lab, Results and Prospects

75   0   0.0 ( 0 )
 Added by Latifa Elouadrhirs
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

Recent results from the Deeply Virtual Compton Scattering (DVCS) program at Jefferson Lab will be presented. Approved dedicated DVCS experiments at 6 GeV and plans for the 12 GeV upgrade will be discussed.



rate research

Read More

140 - A. Afanasev , I. Albayrak , S. Ali 2021
We propose to use the High Momentum Spectrometer of Hall C combined with the Neutral Particle Spectrometer (NPS) to perform high precision measurements of the Deeply Virtual Compton Scattering (DVCS) cross section using a beam of positrons. The combination of measurements with oppositely charged incident beams is the only unambiguous way to disentangle the contribution of the DVCS$^2$ term in the photon electroproduction cross section from its interference with the Bethe-Heitler amplitude. This provides a stronger way to constrain the Generalized Parton Distributions of the nucleon. A wide range of kinematics accessible with an 11 GeV beam off an unpolarized proton target will be covered. The $Q^2-$dependence of each contribution will be measured independently.
We report on the measurement of the beam spin asymmetry in the deeply virtual Compton scattering off $^4$He using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab using a 6 GeV longitudinally polarized electron beam incident on a pressurized $^4$He gaseous target. We detail the method used to ensure the exclusivity of the measured reactions, in particular the upgrade of CLAS with a radial time projection chamber to detect the low-energy recoiling $^4$He nuclei and an inner calorimeter to extend the photon detection acceptance at forward angles. Our results confirm the theoretically predicted enhancement of the coherent ($e^4$He$~to~e$$^4$He$gamma$) beam spin asymmetries compared to those observed on the free proton, while the incoherent ($e^4$He$~to~e$p$gamma$X$$) asymmetries exhibit a 30$%$ suppression. From the coherent data, we were able to extract, in a model-independent way, the real and imaginary parts of the only $^4$He Compton form factor, $cal H_A$, leading the way toward 3D imaging of the partonic structure of nuclei.
204 - Laurent Schoeffel 2008
Standard parton distribution functions contain neither information on the correlations between partons nor on their transverse motion, then a vital knowledge about the three dimensional structure of the nucleon is lost. Hard exclusive processes, in particular DVCS, are essential reactions to go beyond this standard picture. In the following, we examine the most recent data and their implication on the quarks/gluons imaging (tomography) of the nucleon.
Diffractive deeply virtual Compton scattering (DiDVCS) is the process $gamma^*(- Q^2) + N rightarrow rho^0 + gamma^* (Q^2)+ N$, where N is a nucleon or light nucleus, in the kinematical regime of large rapidity gap between the $rho^0$ and the final photon-nucleus system, and in the generalized Bjorken regime where both photon virtualities $Q^2$ and $ Q^2$ are large. We show that this process has the unique virtue of combining the large diffractive cross sections at high energy with the tomographic ability of deeply virtual Compton scattering to scrutinize the quark and gluon content of nucleons and light nuclei. Its study at an electron-ion collider would enlighten the internal structure of hadrons.
576 - Latifa Elouadrhiri 2008
An overview is given about the capabilities provided by the JLab 12 GeV Upgrade to measure deeply virtual exclusive processes with high statistics and covering a large kinematics range in the parameters that are needed to allow reconstruction of a spatial image of the nucleons quark structure. The measurements planned with CLAS12 will cross section asymmetries with polarized beams and with longitudinally and transversely polarized proton targets in the constrained kinematics $x = pm xi$. In addition, unpolarized DVCS cross sections, and doubly polarized beam target asymmetries will be measured as well. In this talk only the beam and target asymmetries will be discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا