We calculate the asymptotic high-energy amplitude for electrons scattering at one ion as well as at two colliding ions, respectively, by means of perturbation theory. We show that the interaction with one ion eikonalizes and that the interaction with two ions causally decouples. We are able to put previous results on perturbative grounds and propose further applications for the obtained rules for interactions on the light cone. The formalism will be of use for the calculation of Coulomb corrections to electron-positron pair creation in heavy ion collisions. Finally we discuss the results and inherent dangers of the employed approximations.
Dilepton production in $pp$ and $Au+Au$ nucleus-nucleus collisions at $sqrt{s}$ = 200 GeV as well as in $In+In$ and $Pb+Au$ at 158 A$cdot$GeV is studied within the microscopic HSD transport approach. A comparison to the data from the PHENIX Collaboration at RHIC shows that standard in-medium effects of the $rho, omega$ vector mesons - compatible with the NA60 data for $In+In$ at 158 A$cdot$GeV and the CERES data for $Pb+Au$ at 158 A$cdot$GeV - do not explain the large enhancement observed in the invariant mass regime from 0.2 to 0.5 GeV in $Au+Au$ collisions at $sqrt{s}$ = 200 GeV relative to $pp$ collisions.
We review recent developments in the field of microscopic transport model calculations for ultrarelativistic heavy ion collisions. In particular, we focus on the strangeness production, for example, the phi-meson and its role as a messenger of the early phase of the system evolution. Moreover, we discuss the important effects of the (soft) field properties on the multiparticle system. We outline some current problems of the models as well as possible solutions to them.
Using the quantum molecular dynamics model, we study the role of mass asymmetry of colliding nuclei on the fragmentation at the balance energy and on its mass dependence. The study is done by keeping the total mass of the system fixed as 40, 80, 160, and 240 and by varying the mass asymmetry of the ($eta$ = $frac{A_{T}-A_{P}}{A_{T}+A_{P}}$; where $A_{T}$ and $A_{P}$ are the masses of the target and projectile, respectively) reaction from 0.1 to 0.7. Our results clearly indicate a sizeable effect of the mass asymmetry on the multiplicity of various fragments. The mass asymmetry dependence of various fragments is found to increase with increase in total system mass (except for heavy mass fragments). Similar to symmetric reactions, a power law system mass dependence of various fragment multiplicities is also found to exit for large asymmetries.
Using the quantum molecular dynamics model, we study the nuclear dynamics at the balance energy of mass asymmetric colliding nuclei by keeping the total mass of the system fixed as 40, 80, 160, and 240. The calculations are performed by varying the mass asymmetry ($eta$ = $frac{A_{T}-A_{P}}{A_{T}+A_{P}}$; where $A_{T}$ and $A_{P}$ are the masses of the target and projectile, respectively) of the reaction from 0.1 to 0.7. In particular, we study the various quantities like average and maximum density, collision rate, participant-spectator matter, anisotropic ratio, relative momentum as well as their mass asymmetry and mass dependence. We find sizeable effects of mass asymmetry on these quantities. Our results indicate that the mass dependence of various quantities increases slightly with increase in $eta$.
We describe a model of jet quenching in nuclear collisions at RHIC energies. In the model, jet quenching is to be caused by the interruption of jet formation by nucleons arriving at the position of jet formation in a time shorter than the jet formation time. Our mechanism predicts suppression of high-pt spectra also in d+Au reactions.
U. Eichmann
,J. Reinhardt
,W. Greiner
.
(1998)
.
"Electron Propagation in the Field of Colliding Nuclei at Ultrarelativistic Energies"
.
Ulrich Eichmann
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا