Do you want to publish a course? Click here

The relativistic impulse approximation for the exclusive electrodisintegration of the deuteron

57   0   0.0 ( 0 )
 Added by Serge G. Bondarenko
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

The electrodisintegration of the deuteron in the frame of the Bethe-Salpeter approach with a separable kernel of the nucleon-nucleon interaction is considered. This conception keeps the covariance of a description of the process. A comparison of relativistic and nonrelativistic calculations is presented. The factorization of the cross section of the reaction in the impulse approximation is obtained by analytical calculations. It is shown that the photon-neutron interaction plays an important role.



rate research

Read More

The exclusive electrodisintegration of the deuteron is considered within the Bethe-Salpeter approach with a separable interaction kernel. The relativistic kernel of nucleon-nucleon interaction is obtained considering the phase shifts in the elastic neutron-proton scattering and properties of the deuteron. The differential cross section is calculated within the impulse approximation under several kinematic conditions of the Bonn experiment. Final state interactions between the outgoing nucleons are taken into account. Partial-wave states of the neutron-proton pair with total angular momentum J=0,1 are considered.
The paper considers the electrodisintegration of the deuteron for kinematic conditions of the JLab experiment E-94-019. The calculations have been performed within the covariant Bethe-Salpeter approach with a separable kernel of nucleon-nucleon interactions. The results have been obtained using the relativistic plane wave impulse approximation and compared with experimental data and other models. The influence of nucleon electromagnetic form factors has been investigated.
The electromagnetic interactions of a relativistic two-body bound state are formulated in three dimensions using an equal-time (ET) formalism. This involves a systematic reduction of four-dimensional dynamics to a three-dimensional form by integrating out the time components of relative momenta. A conserved electromagnetic current is developed for the ET formalism. It is shown that consistent truncations of the electromagnetic current and the $NN$ interaction kernel may be made, order-by-order in the coupling constants, such that appropriate Ward-Takahashi identities are satisfied. A meson-exchange model of the $NN$ interaction is used to calculate deuteron vertex functions. Calculations of electromagnetic form factors for elastic scattering of electrons by deuterium are performed using an impulse-approximation current. Negative-energy components of the deuterons vertex function and retardation effects in the meson-exchange interaction are found to have only minor effects on the deuteron form factors.
94 - J.A. Caballero 2005
Superscaling of the quasielastic cross section in charged current neutrino-nucleus reactions at energies of a few GeV is investigated within the framework of the relativistic impulse approximation. Several approaches are used to describe final state interactions and comparisons are made with the plane wave approximation. Superscaling is very successful in all cases. The scaling function obtained using a relativistic mean field for the final states shows an asymmetric shape with a long tail extending towards positive values of the scaling variable, in excellent agreement with the behavior presented by the experimental scaling function.
180 - Z.P. Li , G.C. Hillhouse , 2008
We present the first study to examine the validity of the relativistic impulse approximation (RIA) for describing elastic proton-nucleus scattering at incident laboratory kinetic energies lower than 200 MeV. For simplicity we choose a $^{208}$Pb target, which is a spin-saturated spherical nucleus for which reliable nuclear structure models exist. Microscopic scalar and vector optical potentials are generated by folding invariant scalar and vector scattering nucleon-nucleon (NN) amplitudes, based on our recently developed relativistic meson-exchange model, with Lorentz scalar and vector densities resulting from the accurately calibrated PK1 relativistic mean field model of nuclear structure. It is seen that phenomenological Pauli blocking (PB) effects and density-dependent corrections to $sigma$N and $omega$N meson-nucleon coupling constants modify the RIA microscopic scalar and vector optical potentials so as to provide a consistent and quantitative description of all elastic scattering observables, namely total reaction cross sections, differential cross sections, analyzing powers and spin rotation functions. In particular, the effect of PB becomes more significant at energies lower than 200 MeV, whereas phenomenological density-dependent corrections to the NN interaction {it also} play an increasingly important role at energies lower than 100 MeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا