Do you want to publish a course? Click here

Dibaryons as canonically quantized biskyrmions

44   0   0.0 ( 0 )
 Added by Dan-Olof Riska
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

The characteristic feature of the ground state configuration of the Skyrme model description of nuclei is the absence of recognizable individual nucleons. The ground state of the skyrmion with baryon number 2 is axially symmetric, and is well approximated by a simple rational map, which represents a direct generalization of Skyrmes hedgehog ansatz for the nucleon. If the Lagrangian density is canonically quantized this configuration may support excitations that lie close and possible below the threshold for pion decay, and therefore describe dibaryons. The quantum corrections stabilize these solutions, the mass density of which have the correct exponential fall off at large distances.



rate research

Read More

325 - H. Clement , T. Skorodko 2020
Hexaquarks constitute a natural extension of complex quark systems like also tetra- and pentaquarks do. To this end the current status of $d^*(2380)$ in both experiment and theory is shortly reviewed. Recent high-precision measurements in the nucleon-nucleon channel and analyses thereof have established $d^*(2380)$ as an indisputable resonance in the long-sought dibaryon channel. Important features of this $I(J^P) = 0(3^+)$ state are its narrow width and its deep binding relative to the $Delta(1232)Delta(1232)$ threshold. Its decay branchings favor theoretical calculations predicting a compact hexaquark nature of this state. We review the current status of experimental and theoretical studies on $d^*(2380)$ as well as new physics aspects it may bring in the future. In addition, we review the situation at the $Delta(1232) N$ and $N^*(1440)N$ thresholds, where evidence for a number of resonances of presumably molecular nature have been found -- similar to the situation in charmed and beauty sectors. Finally we briefly discuss the situation of dibaryon searches in the flavored quark sectors.
We investigate the interaction between H-dibaryons employing a quark cluster model with a one-gluon-exchange potential and an effective meson exchange potential (EMEP). A deeply-bound state of two H-dibaryons due to the medium range attraction of the EMEP is obtained. The bound H--H system has a size of about 0.8 $sim$ 0.9 fm because of the short-range repulsion generated by the color-magnetic interaction and the Pauli principle.
Properties of six-quark dibaryons in nuclear medium are considered by example of $A=6$ nuclei within the three-cluster $alpha+2N$ model. Dibaryon production in nuclei leads to the appearance of a three-body force between the dibaryon and nuclear core. This non-conventional scalar force is shown to provide an additional attractive contribution to the three-body binding energy. This three-body contribution improves noticeably agreement between theoretical results and experimental data for the majority of observables. The most serious difference between the traditional $NN$-force models and the dibaryon-induced model is found for the nucleon momentum distribution, the latter model providing a strong enrichment of the high-momentum components both for $^6$Li and $^6$He cases.
98 - T. Goldman 1998
A relativistic quark potential model is used to do a systematic search for quasi-stable dibaryon states in the $u$, $d$, and $s$ three flavor world. Flavor symmetry breaking and channel coupling effects are included and an adiabatic method and fractional parentage expansion technique are used in the calculations. The relativistic model predicts dibaryon candidates completely consistent with the nonrelativistic model.
We consider the rigid body quantization of Skyrmions with topological charges 1 to 8, as approximated by the rational map ansatz. Novel, general expressions for the elements of the inertia tensors, in terms of the approximating rational map, are presented and are used to determine the kinetic energy contribution to the total energy of the ground and excited states of the quantized Skyrmions. Our results are compared to the experimentally determined energy levels of the corresponding nuclei, and the energies and spins of a few as yet unobserved states are predicted.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا