Do you want to publish a course? Click here

Systematic Theoretical Search for Dibaryons in a Relativistic Model

99   0   0.0 ( 0 )
 Added by Terry Goldman
 Publication date 1998
  fields
and research's language is English
 Authors T. Goldman




Ask ChatGPT about the research

A relativistic quark potential model is used to do a systematic search for quasi-stable dibaryon states in the $u$, $d$, and $s$ three flavor world. Flavor symmetry breaking and channel coupling effects are included and an adiabatic method and fractional parentage expansion technique are used in the calculations. The relativistic model predicts dibaryon candidates completely consistent with the nonrelativistic model.



rate research

Read More

The momentum correlation functions of baryon pairs, which reflects the baryon-baryon interaction at low energies, are investigated for multi-strangeness pairs ($OmegaOmega$ and $NOmega$) produced in relativistic heavy-ion collisions. We calculate the correlation functions based on an expanding source model constrained by single-particle distributions. The interaction potentials are taken from those obtained from recent lattice QCD calculations at nearly physical quark masses. Experimental measurements of these correlation functions for different system sizes will help to disentangle the strong interaction between baryons and to unravel the possible existence of strange dibaryons.
71 - Cheng Chiu , Chun Shen 2021
We explore theoretical uncertainties in the hydrodynamic description of relativistic heavy-ion collisions by examining the full non-linear causality conditions and quantifying the second-order transport coefficients role on flow observables. The causality conditions impose physical constraints on the maximum allowed values of inverse Reynolds numbers during the hydrodynamic evolution. Including additional second-order gradient terms in the Denicol-Niemi-Moln{a}r-Rischke (DNMR) theory significantly shrinks the casual regions compared to those in the Israel-Stewart hydrodynamics. For Au+Au collisions, we find the variations of flow observables are small with and without imposing the necessary causality conditions, suggesting a robust extraction of the Quark-Gluon Plasmas transport coefficients in previous model-to-data comparisons. However, sizable sensitivity is present in small p+Au collisions, which poses challenges to study the small systems collectivity.
A systematic search for a critical point in the phase diagram of QCD matter is underway at the Relativistic Heavy Ion Collider (RHIC) and is planned at several future facilities. Its existence, if confirmed, and its location will greatly enhance our understanding of QCD. In this note we emphasize several important issues that are often not fully recognized in theoretical interpretations of experimental results relevant to the critical point search. We discuss ways in which our understanding on these issues can be improved.
325 - H. Clement , T. Skorodko 2020
Hexaquarks constitute a natural extension of complex quark systems like also tetra- and pentaquarks do. To this end the current status of $d^*(2380)$ in both experiment and theory is shortly reviewed. Recent high-precision measurements in the nucleon-nucleon channel and analyses thereof have established $d^*(2380)$ as an indisputable resonance in the long-sought dibaryon channel. Important features of this $I(J^P) = 0(3^+)$ state are its narrow width and its deep binding relative to the $Delta(1232)Delta(1232)$ threshold. Its decay branchings favor theoretical calculations predicting a compact hexaquark nature of this state. We review the current status of experimental and theoretical studies on $d^*(2380)$ as well as new physics aspects it may bring in the future. In addition, we review the situation at the $Delta(1232) N$ and $N^*(1440)N$ thresholds, where evidence for a number of resonances of presumably molecular nature have been found -- similar to the situation in charmed and beauty sectors. Finally we briefly discuss the situation of dibaryon searches in the flavored quark sectors.
${bf Background}$ Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger Equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). ${bf Purpose}$ Seeking to bridge these complementary worldviews, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. ${bf Method}$ To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark $+$ scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter Equation (BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data. ${bf Results}$ From this formalism, we define and compute a new quantity --- the Euclidean density function (EDF) --- an object that characterizes the nucleons various charge distributions as functions of the quarks Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the dressing effect on the protons axial-singlet charge to be small in magnitude and consistent with zero. ${bf Conclusions}$ The scalar quark $+$ diquark ECQM is a step toward a realistic quark model in Euclidean space, and urges additional refinements. The small size we obtain for the impact of the dressed vertex on the axial-singlet charge suggests that models without this effect are on firm ground to neglect it.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا