Do you want to publish a course? Click here

Excitation functions of proton induced nuclear reactions on natW up to 40 MeV

62   0   0.0 ( 0 )
 Added by Guinyun Kim
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

Excitation functions for the production of the 181,182m,182g,183,184g,186Re and 183,184Ta radionuclides from proton bombardment on natural tungsten were measured using the stacked-foil activation technique for the proton energies up to 40 MeV. A new data set has been given for the formation of the investigated radionuclides. Results are in good agreement with the earlier reported experimental data and theoretical calculations based on the ALICE-IPPE code. The thick target integral yields were also deduced from the measured excitation functions. The deduced yield values were compared with the directly measured thick target yield (TTY), and found acceptable agreement. The investigated radionuclide 186Re has remarkable applications in the field of nuclear medicine, whereas the data of 183,184gRe and 183Ta have potential applications in thin layer activation analysis and biomedical tracer studies, respectively.



rate research

Read More

326 - M. Avrigeanu 2007
Excitation functions were measured for the $^{55}$Mn(n,2n)$^{54}$Mn, $^{55}$Mn(n,$alpha$)$^{52}$V, $^{63}$Cu(n,$alpha$)$^{60}$Co, $^{65}$Cu(n,2n)$^{64}$Cu, and $^{65}$Cu(n,p)$^{65}$Ni reactions from 13.47 to 14.83 MeV. The experimental cross sections are compared with the results of calculations including all activation channels for the stable isotopes of Mn and Cu, for neutron incident energies up to 50 MeV. Within the energy range up to 20 MeV the model calculations are most sensitive to the parameters related to nuclei in the early stages of the reaction, while the model assumptions are better established by analysis of the data in the energy range 20-40 MeV. While the present analysis has taken advantage of both a new set of accurate measured cross sections around 14 MeV and the larger data basis fortunately available between 20 and 40 MeV for the Mn and Cu isotopes, the need of additional measurements below as well as above 40 MeV is pointed out. Keywords: 55Mn, 63,65Cu, E$leq$40 MeV, Neutron activation cross section measurements, Nuclear reactions, Model calculations, Manganese, Copper
70 - F. Ditroi , S. Takacs , H. Haba 2016
Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. The radioisotope $^{117m}$Sn is a very important theranostic (therapeutic + diagnostic) radioisotope, so special care was taken to the results for that isotope. The well-established stacked foil technique followed by gamma-spectrometry with HPGe gamma spectrometers were used. The target and monitor foils in the stack were commercial high purity metal foils. From the irradiated targets $^{117m}$Sn, $^{113}$Sn, $^{110}$Sn, $^{117m,g}$In, $^{116m}$In, $^{115m}$In, $^{114m}$In, $^{113m}$In, $^{111}$In, $^{110m,g}$In, $^{109m}$In, $^{108m}$In, $^{115g}$Cd and $^{111m}$Cd were identified and their excitation functions were derived. The results were compared with the data of the previous measurements from the literature and with the results of the theoretical nuclear reaction model code calculations TALYS 1.8 (TENDL-2015) and EMPIRE 3.2 (Malta). From the cross section curves thick target yields were calculated and compared with the available literature data.
159 - A. Guertin 2005
Double differential cross sections (DDCS) for light charged particles (proton, deuteron, triton, 3He, alpha) and neutrons produced by a proton beam impinging on a 238U target at 62.9 MeV were measured at the CYCLONE facility in Louvain-la-Neuve (Belgium). These measurements have been performed using two independent experimental set-ups ensuring neutron (DeMoN counters) and light charged particles (Si-Si-CsI telescopes) detection. The charged particle data were measured at 11 different angular positions from 25 degrees to 140 degrees allowing the determination of angle differential, energy differential and total production cross sections.
Purpose: Accurate new measurements of low-energy deuteron-induced reaction cross sections for natural Cr target can enhance the related database and the opportunity for an unitary and consistent account of the involved reaction mechanisms. Methods: The activation cross sections of $^{51,52,54}$Mn, $^{51}$Cr, and $^{48}$V nuclei for deuterons incident on natural Cr at energies up to 20 MeV, were measured by the stacked-foil technique and high resolution gamma spectrometry using U-120M cyclotron of the Center of Accelerators and Nuclear Analytical Methods (CANAM) of the Nuclear Physics Institute of the Czech Academy of Sciences (NPI CAS). They as well as formerly available data for deuteron interactions with Cr isotopes up to 60 MeV are the object of an extended analysis of all processes from elastic scattering until the evaporation from fully equilibrated compound system, but with a particular attention given to the BU and DR mechanisms. Results: The new measured activation excitation functions proved essential for the enrichment of the deuteron database, while the theoretical analysis of all available data strengthens for the first time their consistent account provided that (i) a suitable BU and DR assessment is completed by (ii) the assumption of PE and CN contributions corrected for decrease of the total-reaction cross section due to the leakage of the initial deuteron flux towards BU and DR processes. Conclusions: The suitable description of nuclear mechanisms involved within deuteron-induced reactions on chromium, taking into account especially the BU and DR direct processes, is validated by an overall agreement of the calculated and measured cross sections including particularly the new experimental data at low energies.
Theoretical models often differ significantly from measured data in their predictions of the magnitude of nuclear reactions that produce radionuclides for medical, research, and national security applications. In this paper, we compare a priori predictions from several state-of-the-art reaction modeling packages (CoH, EMPIRE, TALYS, and ALICE) to cross sections measured using the stacked-target activation method. The experiment was performed using the LBNL 88-Inch Cyclotron with beams of 25 and 55 MeV protons on a stack of iron, copper, and titanium foils. 34 excitation functions were measured for 4 < Ep < 55 MeV, including the first measurement of the independent cross sections for natFe(p,x) 49,51Cr, 51,52m,52g,56Mn, and 58m,58gCo. All of the models failed to reproduce the isomer-to-ground state ratio for reaction channels at compound and pre-compound energies, suggesting issues in modeling the deposition or distribution of angular momentum in these residual nuclei.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا