Do you want to publish a course? Click here

Consistent account of deuteron-induced reactions on Cr up to 60 MeV

102   0   0.0 ( 0 )
 Added by Marilena Avrigeanu
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Purpose: Accurate new measurements of low-energy deuteron-induced reaction cross sections for natural Cr target can enhance the related database and the opportunity for an unitary and consistent account of the involved reaction mechanisms. Methods: The activation cross sections of $^{51,52,54}$Mn, $^{51}$Cr, and $^{48}$V nuclei for deuterons incident on natural Cr at energies up to 20 MeV, were measured by the stacked-foil technique and high resolution gamma spectrometry using U-120M cyclotron of the Center of Accelerators and Nuclear Analytical Methods (CANAM) of the Nuclear Physics Institute of the Czech Academy of Sciences (NPI CAS). They as well as formerly available data for deuteron interactions with Cr isotopes up to 60 MeV are the object of an extended analysis of all processes from elastic scattering until the evaporation from fully equilibrated compound system, but with a particular attention given to the BU and DR mechanisms. Results: The new measured activation excitation functions proved essential for the enrichment of the deuteron database, while the theoretical analysis of all available data strengthens for the first time their consistent account provided that (i) a suitable BU and DR assessment is completed by (ii) the assumption of PE and CN contributions corrected for decrease of the total-reaction cross section due to the leakage of the initial deuteron flux towards BU and DR processes. Conclusions: The suitable description of nuclear mechanisms involved within deuteron-induced reactions on chromium, taking into account especially the BU and DR direct processes, is validated by an overall agreement of the calculated and measured cross sections including particularly the new experimental data at low energies.



rate research

Read More

The scarce data systematics and complexity of deuteron interactions demand the update of both the experimental database and theoretical frame of deuteron activation cross sections. Various reactions induced by neutrons and protons following the deuteron breakup (BU) should be also taken into account. On the other hand, deuteron reaction cross sections recommended recently for high-priority elements are still based on data fit without predictive power. Purpose: Accurate new measurements of low-energy deuteron-induced reaction cross sections for monoisotopic (55Mn) natural manganese target enhance the related database as well as the opportunity of an unitary and consistent account of the related reaction mechanisms. Method: Activation cross sections of 54,56Mn, and 51Cr nuclei by deuterons on $^{55}$Mn were measured at energies <20 MeV by the stacked-foil technique and high resolution gamma spectrometry at the U-120M cyclotron of CANAM, NPI CAS. Then all available data for deuterons on 55Mn up to 50 MeV are analyzed paying particular attention to BU and direct reaction (DR) mechanisms. Results: Newly measured activation cross sections strengthen the deuteron database at low energies, at once with a consistent account for the first time of all available data. Conclusions: Due account of deuteron-induced reactions on 55Mn, including particularly the new experimental data at low energies, is provided by a suitable BU and DR assessment.
$^{72}$As is a promising positron emitter for diagnostic imaging that can be employed locally using a $^{72}$Se generator. However, current reaction pathways to $^{72}$Se have insufficient nuclear data for efficient production using regional 100-200 MeV high-intensity proton accelerators. In order to address this deficiency, stacked-target irradiations were performed at LBNL, LANL, and BNL to measure the production of the $^{72}$Se/$^{72}$As PET generator system via $^{75}$As(p,x) between 35 and 200 MeV. This work provides the most well-characterized excitation function for $^{75}$As(p,4n)$^{72}$Se starting from threshold. Additional focus was given to report the first measurements of $^{75}$As(p,x)$^{68}$Ge and bolster an already robust production capability for the highly valuable $^{68}$Ge/$^{68}$Ga PET generator. Thick target yield comparisons with prior established formation routes to both generators are made. In total, high-energy proton-induced cross sections are reported for 55 measured residual products from $^{75}$As, Cu, and Ti targets, where the latter two materials were present as monitor foils. These results were compared with literature data as well as the default theoretical calculations of the nuclear model codes TALYS, CoH, EMPIRE, and ALICE. Reaction modeling at these energies is typically unsatisfactory due to few prior published data and many interacting physics models. Therefore, a detailed assessment of the TALYS code was performed with simultaneous parameter adjustments applied according to a standardized procedure. Particular attention was paid to the formulation of the two-component exciton model in the transition between the compound and pre-equilibrium regions, with a linked investigation of level density models for nuclei off of stability and their impact on modeling predictive power.
Excitation functions for the production of the 181,182m,182g,183,184g,186Re and 183,184Ta radionuclides from proton bombardment on natural tungsten were measured using the stacked-foil activation technique for the proton energies up to 40 MeV. A new data set has been given for the formation of the investigated radionuclides. Results are in good agreement with the earlier reported experimental data and theoretical calculations based on the ALICE-IPPE code. The thick target integral yields were also deduced from the measured excitation functions. The deduced yield values were compared with the directly measured thick target yield (TTY), and found acceptable agreement. The investigated radionuclide 186Re has remarkable applications in the field of nuclear medicine, whereas the data of 183,184gRe and 183Ta have potential applications in thin layer activation analysis and biomedical tracer studies, respectively.
70 - F. Ditroi , S. Takacs , H. Haba 2016
Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. The radioisotope $^{117m}$Sn is a very important theranostic (therapeutic + diagnostic) radioisotope, so special care was taken to the results for that isotope. The well-established stacked foil technique followed by gamma-spectrometry with HPGe gamma spectrometers were used. The target and monitor foils in the stack were commercial high purity metal foils. From the irradiated targets $^{117m}$Sn, $^{113}$Sn, $^{110}$Sn, $^{117m,g}$In, $^{116m}$In, $^{115m}$In, $^{114m}$In, $^{113m}$In, $^{111}$In, $^{110m,g}$In, $^{109m}$In, $^{108m}$In, $^{115g}$Cd and $^{111m}$Cd were identified and their excitation functions were derived. The results were compared with the data of the previous measurements from the literature and with the results of the theoretical nuclear reaction model code calculations TALYS 1.8 (TENDL-2015) and EMPIRE 3.2 (Malta). From the cross section curves thick target yields were calculated and compared with the available literature data.
326 - M. Avrigeanu 2007
Excitation functions were measured for the $^{55}$Mn(n,2n)$^{54}$Mn, $^{55}$Mn(n,$alpha$)$^{52}$V, $^{63}$Cu(n,$alpha$)$^{60}$Co, $^{65}$Cu(n,2n)$^{64}$Cu, and $^{65}$Cu(n,p)$^{65}$Ni reactions from 13.47 to 14.83 MeV. The experimental cross sections are compared with the results of calculations including all activation channels for the stable isotopes of Mn and Cu, for neutron incident energies up to 50 MeV. Within the energy range up to 20 MeV the model calculations are most sensitive to the parameters related to nuclei in the early stages of the reaction, while the model assumptions are better established by analysis of the data in the energy range 20-40 MeV. While the present analysis has taken advantage of both a new set of accurate measured cross sections around 14 MeV and the larger data basis fortunately available between 20 and 40 MeV for the Mn and Cu isotopes, the need of additional measurements below as well as above 40 MeV is pointed out. Keywords: 55Mn, 63,65Cu, E$leq$40 MeV, Neutron activation cross section measurements, Nuclear reactions, Model calculations, Manganese, Copper
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا