We derive a straightforward variational method to construct embedded soliton solutions of the third-order nonlinear Schodinger equation and analytically demonstrate that these solitons exist as a continuous family. We argue that a particular embedded soliton when perturbed may always relax to the adjacent one so as to make it fully stable.
The Riemann-Hilbert (RH) problem is first developed to study the focusing nonlinear Schr{o}dinger (NLS) equation with multiple high-order poles under nonzero boundary conditions. Laurent expansion and Taylor series are employed to replace the residues at the simple- and the second-poles. Further, the solution of RH problem is transformed into a closed system of algebraic equations, and the soliton solutions corresponding to the transmission coefficient $1/s_{11}(z)$ with an $N$-order pole are obtained by solving the algebraic system. Then, in a more general case, the transmission coefficient with multiple high-order poles is studied, and the corresponding solutions are obtained. In addition, for high-order pole, the propagation behavior of the soliton solution corresponding to a third-order pole is given as example.
We consider a matrix Riemann-Hilbert problem for the sextic nonlinear Schr{o}dinger equation with a non-zero boundary conditions at infinity. Before analyzing the spectrum problem, we introduce a Riemann surface and uniformization coordinate variable in order to avoid multi-value problems. Based on a new complex plane, the direct scattering problem perform a detailed analysis of the analytical, asymptotic and symmetry properties of the Jost functions and the scattering matrix. Then, a generalized Riemann-Hilbert problem (RHP) is successfully established from the results of the direct scattering transform. In the inverse scattering problem, we discuss the discrete spectrum, residue condition, trace formula and theta condition under simple poles and double poles respectively, and further solve the solution of a generalized RHP. Finally, we derive the solution of the equation for the cases of different poles without reflection potential. In addition, we analyze the localized structures and dynamic behaviors of the resulting soliton solutions by taking some appropriate values of the parameters appeared in the solutions.
In this work, we consider the generalized variable-coefficient nonlinear Schr{o}dinger equation with non-vanishing boundary conditions at infinity including the simple and double poles of the scattering coefficients. By introducing an appropriate Riemann surface and uniformization coordinate variable, we first convert the double-valued functions which occur in the process of direct scattering to single-value functions. Then, we establish the direct scattering problem via analyzing the analyticity, symmetries and asymptotic behaviors of Jost functions and scattering matrix derived from Lax pairs of the equation. Based on these results, a generalized Riemann-Hilbert problem is successfully established for the equation. The discrete spectrum and residual conditions, trace foumulae and theta conditions are investigated systematically including the simple poles case and double poles case. Moreover, the inverse scattering problem is solved via the Riemann-Hilbert approach. Finally, under the condition of reflection-less potentials, the soliton and breather solutions are well derived. Via evaluating the impact of each parameters, some interesting phenomena of these solutions are analyzed graphically.
Asymptotic reductions of a defocusing nonlocal nonlinear Schr{o}dinger model in $(3+1)$-dimensions, in both Cartesian and cylindrical geometry, are presented. First, at an intermediate stage, a Boussinesq equation is derived, and then its far-field, in the form of a variety of Kadomtsev-Petviashvilli (KP) equations for right- and left-going waves, is found. KP models includ
Self-gravitating quantum matter may exist in a wide range of cosmological and astrophysical settings from the very early universe through to present-day boson stars. Such quantum matter arises in a number of different theories, including the Peccei-Quinn axion and UltraLight (ULDM) or Fuzzy (FDM) dark matter scenarios. We consider the dynamical evolution of perturbations to the spherically symmetric soliton, the ground state solution to the Schr{o}dinger-Poisson system common to all these scenarios. We construct the eigenstates of the Schr{o}dinger equation, holding the gravitational potential fixed to its ground state value. We see that the eigenstates qualitatively capture the properties seen in full ULDM simulations, including the soliton breathing mode, the random walk of the soliton center, and quadrupolar distortions of the soliton. We then show that the time-evolution of the gravitational potential and its impact on the perturbations can be well described within the framework of time-dependent perturbation theory. Applying our formalism to a synthetic ULDM halo reveals considerable mixing of eigenstates, even though the overall density profile is relatively stable. Our results provide a new analytic approach to understanding the evolution of these systems as well as possibilities for faster approximate simulations.