Do you want to publish a course? Click here

Schr{o}dinger-Poisson Solitons: Perturbation Theory

111   0   0.0 ( 0 )
 Added by Luna Zagorac
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Self-gravitating quantum matter may exist in a wide range of cosmological and astrophysical settings from the very early universe through to present-day boson stars. Such quantum matter arises in a number of different theories, including the Peccei-Quinn axion and UltraLight (ULDM) or Fuzzy (FDM) dark matter scenarios. We consider the dynamical evolution of perturbations to the spherically symmetric soliton, the ground state solution to the Schr{o}dinger-Poisson system common to all these scenarios. We construct the eigenstates of the Schr{o}dinger equation, holding the gravitational potential fixed to its ground state value. We see that the eigenstates qualitatively capture the properties seen in full ULDM simulations, including the soliton breathing mode, the random walk of the soliton center, and quadrupolar distortions of the soliton. We then show that the time-evolution of the gravitational potential and its impact on the perturbations can be well described within the framework of time-dependent perturbation theory. Applying our formalism to a synthetic ULDM halo reveals considerable mixing of eigenstates, even though the overall density profile is relatively stable. Our results provide a new analytic approach to understanding the evolution of these systems as well as possibilities for faster approximate simulations.



rate research

Read More

Massive scalar fields provide excellent dark matter candidates, whose dynamics are often explored analytically and numerically using nonrelativistic Schr{o}dinger-Poisson (SP) equations in a cosmological context. In this paper, starting from the nonlinear and fully relativistic Klein-Gordon-Einstein (KGE) equations in an expanding universe, we provide a systematic framework for deriving the SP equations, as well as relativistic corrections to them, by integrating out `fast modes and including nonlinear metric and matter contributions. We provide explicit equations for the leading-order relativistic corrections, which provide insight into deviations from the SP equations as the system approaches the relativistic regime. Upon including the leading-order corrections, our equations are applicable beyond the domain of validity of the SP system, and are simpler to use than the full KGE case in some contexts. As a concrete application, we calculate the mass-radius relationship of solitons in scalar dark matter and accurately capture the deviations of this relationship from the SP system towards the KGE one.
Asymptotic reductions of a defocusing nonlocal nonlinear Schr{o}dinger model in $(3+1)$-dimensions, in both Cartesian and cylindrical geometry, are presented. First, at an intermediate stage, a Boussinesq equation is derived, and then its far-field, in the form of a variety of Kadomtsev-Petviashvilli (KP) equations for right- and left-going waves, is found. KP models includ
We derive a straightforward variational method to construct embedded soliton solutions of the third-order nonlinear Schodinger equation and analytically demonstrate that these solitons exist as a continuous family. We argue that a particular embedded soliton when perturbed may always relax to the adjacent one so as to make it fully stable.
In this paper, we study a class of Schr{o}dinger-Poisson (SP) systems with general nonlinearity where the nonlinearity does not require Ambrosetti-Rabinowitz and Nehari monotonic conditions. We establish new estimates and explore the associated energy functional which is coercive and bounded below on Sobolev space. Together with Ekeland variational principle, we prove the existence of ground state solutions. Furthermore, when the `charge function is greater than a fixed positive number, the (SP) system possesses only zero solutions. In particular, when `charge function is radially symmetric, we establish the existence of three positive solutions and the symmetry breaking of ground state solutions.
Principal component analysis (PCA) has achieved great success in unsupervised learning by identifying covariance correlations among features. If the data collection fails to capture the covariance information, PCA will not be able to discover meaningful modes. In particular, PCA will fail the spatial Gaussian Process (GP) model in the undersampling regime, i.e. the averaged distance of neighboring anchor points (spatial features) is greater than the correlation length of GP. Counterintuitively, by drawing the connection between PCA and Schrodinger equation, we can not only attack the undersampling challenge but also compute in an efficient and decoupled way with the proposed algorithm called Schrodinger PCA. Our algorithm only requires variances of features and estimated correlation length as input, constructs the corresponding Schrodinger equation, and solves it to obtain the energy eigenstates, which coincide with principal components. We will also establish the connection of our algorithm to the model reduction techniques in the partial differential equation (PDE) community, where the steady-state Schrodinger operator is identified as a second-order approximation to the covariance function. Numerical experiments are implemented to testify the validity and efficiency of the proposed algorithm, showing its potential for unsupervised learning tasks on general graphs and manifolds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا