Do you want to publish a course? Click here

Laplacian Growth and Whitham Equations of Soliton Theory

169   0   0.0 ( 0 )
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Laplacian growth (the Hele-Shaw problem) of multi-connected domains in the case of zero surface tension is proven to be equivalent to an integrable systems of Whitham equations known in soliton theory. The Whitham equations describe slowly modulated periodic solutions of integrable hierarchies of nonlinear differential equations. Through this connection the Laplacian growth is understood as a flow in the moduli space of Riemann surfaces.



rate research

Read More

A large class of semi-Hamiltonian systems of hydrodynamic type is interpreted as the equations governing families of critical points of functions obeying the classical linear Darboux equations for conjugate nets.The distinguished role of the Euler-Poisson-Darboux equations and associated Lauricella-type functions is emphasised. In particular, it is shown that the classical g-phase Whitham equations for the KdV and NLS equations are obtained via a g-fold iterated Darboux-type transformation generated by appropriate Lauricella functions.
Reductions of the KP-Whitham system, namely the (2+1)-dimensional hydrodynamic system of five equations that describes the slow modulations of periodic solutions of the Kadomtsev-Petviashvili (KP) equation, are studied. Specifically, the soliton and harmonic wave limits of the KP-Whitham system are considered, which give rise in each case to a four-component (2+1)-dimensional hydrodynamic system. It is shown that a suitable change of dependent variables splits the resulting four-component systems into two parts: (i) a decoupled, independent two-component system comprised of the dispersionless KP equation, (ii) an auxiliary, two-component system coupled to the mean flow equations, which describes either the evolution of a linear wave or a soliton propagating on top of the mean flow. The integrability of both four-component systems is then demonstrated by applying the Haantjes tensor test as well as the method of hydrodynamic reductions. Various exact reductions of these systems are then presented that correspond to concrete physical scenarios.
Based on the well-established theory of discrete conjugate nets in discrete differential geometry, we propose and examine discrete analogues of important objects and notions in the theory of semi-Hamiltonian systems of hydrodynamic type. In particular, we present discrete counterparts of (generalised) hodograph equations, hyperelliptic integrals and associated cycles, characteristic speeds of Whitham type and (implicitly) the corresponding Whitham equations. By construction, the intimate relationship with integrable system theory is maintained in the discrete setting.
458 - Bulat Suleimanov 2012
We construct a solution of an analog of the Schr{o}dinger equation for the Hamiltonian $ H_I (z, t, q_1, q_2, p_1, p_2) $ corresponding to the second equation $P_1^2$ in the Painleve I hierarchy. This solution is produced by an explicit change of variables from a solution of the linear equations whose compatibility condition is the ordinary differential equation $P_1^2$ with respect to $z$. This solution also satisfies an analog of the Schr{o}dinger equation corresponding to the Hamiltonian $ H_{II} (z, t, q_1, q_2, p_1, p_2) $ of Hamiltonian system with respect to $t$ which is compatible with $P_1^2$. A similar situation occurs for the $P_2^2$ equation in the Painleve II hierarchy.
A new class of solutions to Laplacian growth with zero surface tension is presented and shown to contain all other known solutions as special or limiting cases. These solutions, which are time-dependent conformal maps with branch cuts inside the unit circle, are governed by a nonlinear integral equation and describe oil fjords with non-parallel walls in viscous fingering experiments in Hele-Shaw cells. Integrals of motion for the multi-cut Laplacian growth solutions in terms of singularities of the Schwarz function are found, and the dynamics of densities (jumps) on the cuts are derived. The subclass of these solutions with linear Cauchy densities on the cuts of the Schwarz function is of particular interest, because in this case the integral equation for the conformal map becomes linear. These solutions can also be of physical importance by representing oil/air interfaces, which form oil fjords with a constant opening angle, in accordance with recent experiments in a Hele-shaw cell.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا