Do you want to publish a course? Click here

Integrability, exact reductions and special solutions of the KP-Whitham equations

158   0   0.0 ( 0 )
 Added by Mark Hoefer Dr.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Reductions of the KP-Whitham system, namely the (2+1)-dimensional hydrodynamic system of five equations that describes the slow modulations of periodic solutions of the Kadomtsev-Petviashvili (KP) equation, are studied. Specifically, the soliton and harmonic wave limits of the KP-Whitham system are considered, which give rise in each case to a four-component (2+1)-dimensional hydrodynamic system. It is shown that a suitable change of dependent variables splits the resulting four-component systems into two parts: (i) a decoupled, independent two-component system comprised of the dispersionless KP equation, (ii) an auxiliary, two-component system coupled to the mean flow equations, which describes either the evolution of a linear wave or a soliton propagating on top of the mean flow. The integrability of both four-component systems is then demonstrated by applying the Haantjes tensor test as well as the method of hydrodynamic reductions. Various exact reductions of these systems are then presented that correspond to concrete physical scenarios.



rate research

Read More

The present paper is dedicated to integrable models with Mikhailov reduction groups $G_R simeq mathbb{D}_h.$ Their Lax representation allows us to prove, that their solution is equivalent to solving Riemann-Hilbert problems, whose contours depend on the realization of the $G_R$-action on the spectral parameter. Two new examples of Nonlinear Evolution Equations (NLEE) with $mathbb{D}_h$ symmetries are presented.
The Laplacian growth (the Hele-Shaw problem) of multi-connected domains in the case of zero surface tension is proven to be equivalent to an integrable systems of Whitham equations known in soliton theory. The Whitham equations describe slowly modulated periodic solutions of integrable hierarchies of nonlinear differential equations. Through this connection the Laplacian growth is understood as a flow in the moduli space of Riemann surfaces.
The equations of Loewner type can be derived in two very different contexts: one of them is complex analysis and the theory of parametric conformal maps and the other one is the theory of integrable systems. In this paper we compare the both approaches. After recalling the derivation of Lowner equations based on complex analysis we review one- and multi-variable reductions of dispersionless integrable hierarhies (dKP, dBKP, dToda, and dDKP). The one-vaiable reductions are described by solutions of differe
A large class of semi-Hamiltonian systems of hydrodynamic type is interpreted as the equations governing families of critical points of functions obeying the classical linear Darboux equations for conjugate nets.The distinguished role of the Euler-Poisson-Darboux equations and associated Lauricella-type functions is emphasised. In particular, it is shown that the classical g-phase Whitham equations for the KdV and NLS equations are obtained via a g-fold iterated Darboux-type transformation generated by appropriate Lauricella functions.
We find a class of exact solutions to the Lighthill Whitham Richards Payne (LWRP) traffic flow equations. Using two consecutive lagrangian transformations, a linearization is achieved. Next, depending on the initial density, we either apply (again two) Lambert functions and obtain exact formulas for the dependence of the car density and velocity on x and t, or else, failing that, the same result in a parametric representation. The calculation always involves two possible factorizations of a consistency condition. Both must be considered. In physical terms, the lineup usually separates into two offshoots at different velocities. Each velocity soon becomes uniform. This outcome in many ways resembles the two soliton solution to the Korteweg-de Vries equation. We check general conservation requirements. Although traffic flow research has developed tremendously since LWRP, this calculation, being exact, may open the door to solving similar problems, such as gas dynamics or water flow in rivers. With this possibility in mind, we outline the procedure in some detail at the end.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا