In this paper, we derive a B{a}cklund transformation for the supersymmetric Kortweg-de Vries equation. We also construct a nonlinear superposition formula, which allows us to rebuild systematically for the supersymmetric KdV equation the soliton solutions of Carstea, Ramani and Grammaticos.
We show that the KdV flow evolves any real singular initial profile q of the form q=r+r^2, where rinL_{loc}^2, r|_{R_+}=0 into a meromorphic function with no real poles.
The lattice potential Korteweg-de Vries equation (LKdV) is a partial difference equation in two independent variables, which possesses many properties that are analogous to those of the celebrated Korteweg-de Vries equation. These include discrete soliton solutions, Backlund transformations and an associated linear problem, called a Lax pair, for which it provides the compatibility condition. In this paper, we solve the initial value problem for the LKdV equation through a discrete implementation of the inverse scattering transform method applied to the Lax pair. The initial value used for the LKdV equation is assumed to be real and decaying to zero as the absolute value of the discrete spatial variable approaches large values. An interesting feature of our approach is the solution of a discrete Gelfand-Levitan equation. Moreover, we provide a complete characterization of reflectionless potentials and show that this leads to the Cauchy matrix form of N-soliton solutions.
The method of simplest equation is applied for obtaining exact solitary traveling-wave solutions of nonlinear partial differential equations that contain monomials of odd and even grade with respect to participating derivatives. The used simplest equation is $f_xi^2 = n^2(f^2 -f^{(2n+2)/n})$. The developed methodology is illustrated on two examples of classes of nonlinear partial differential equations that contain: (i) only monomials of odd grade with respect to participating derivatives; (ii) only monomials of even grade with respect to participating derivatives. The obtained solitary wave solution for the case (i) contains as particular cases the solitary wave solutions of Korteweg-deVries equation and of a version of the modified Korteweg-deVries equation.
Group classification of a class of third-order nonlinear evolution equations generalizing KdV and mKdV equations is performed. It is shown that there are two equations admitting simple Lie algebras of dimension three. Next, we prove that there exist only four equations invariant with respect to Lie algebras having nontrivial Levi factors of dimension four and six. Our analysis shows that there are no equations invariant under algebras which are semi-direct sums of Levi factor and radical. Making use of these results we prove that there are three, nine, thirty-eight, fifty-two inequivalent KdV-type nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively. Finally, we perform a complete group classification of the most general linear third-order evolution equation.
We present a multi-parameter family of rational solutions to the complex Korteweg-de Vries(KdV) equations. This family of solutions includes particular cases with high-amplitude peaks at the centre, as well as a multitude of cases in which high-order rogue waves are partially split into lower-order fundamental components. We present an empirically-found symmetry which introduces a parameter controlling the splitting of the rogue wave components into multi-peak solutions, and allows for nonsingular solutions at higher order in certain cases.