Do you want to publish a course? Click here

Symmetry classification of KdV-type nonlinear evolution equations

65   0   0.0 ( 0 )
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Group classification of a class of third-order nonlinear evolution equations generalizing KdV and mKdV equations is performed. It is shown that there are two equations admitting simple Lie algebras of dimension three. Next, we prove that there exist only four equations invariant with respect to Lie algebras having nontrivial Levi factors of dimension four and six. Our analysis shows that there are no equations invariant under algebras which are semi-direct sums of Levi factor and radical. Making use of these results we prove that there are three, nine, thirty-eight, fifty-two inequivalent KdV-type nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively. Finally, we perform a complete group classification of the most general linear third-order evolution equation.

rate research

Read More

We give a Lie-algebraic classification of third order quasilinear equations which admit non-trivial Lie point symmetries.
We consider discrete nonlinear hyperbolic equations on quad-graphs, in particular on the square lattice. The fields are associated to the vertices and an equation Q(x_1,x_2,x_3,x_4)=0 relates four fields at one quad. Integrability of equations is understood as 3D-consistency. The latter is a possibility to consistently impose equations of the same type on all the faces of a three-dimensional cube. This allows to set these equations also on multidimensional lattices Z^N. We classify integrable equations with complex fields x, and Q affine-linear with respect to all arguments. The method is based on analysis of singular solutions.
Supersymmetrization of a nonlinear evolution equation in which the bosonic equation is independent of the fermionic variable and the system is linear in fermionic field goes by the name B-supersymmetrization. This special type of supersymmetrization plays a role in superstring theory. We provide B-supersymmetric extension of a number of quasilinear and fully nonlinear evolution equations and find that the supersymmetric system follows from the usual action principle while the bosonic and fermionic equations are individually non Lagrangian in the field variable. We point out that B-supersymmetrization can also be realized using a generalized Noetherian symmetry such that the resulting set of Lagrangian symmetries coincides with symmetries of the bosonic field equations. This observation provides a basis to associate the bosonic and fermionic fields with the terms of bright and dark solitons. The interpretation sought by us has its origin in the classic work of Bateman who introduced a reverse-time system with negative friction to bring the linear dissipative systems within the framework of variational principle.
The paper begins with a review of the well known Novikovs equations and corresponding finite KdV hierarchies. For a positive integer $N$ we give an explicit description of the $N$-th Novikovs equation and its first integrals. Its finite KdV hierarchy consists of $N$ compatible integrable polynomial dynamical systems in $mathbb{C}^{2N}$. Then we discuss a non-commutative version of the $N$-th Novikovs equation defined on a finitely generated free associative algebra $mathfrak{B}_N$ with $2N$ generators. In $mathfrak{B}_N$, for $N=1,2,3,4$, we have found two-sided homogeneous ideals $mathfrak{Q}_Nsubsetmathfrak{B}_N$ (quantisation ideals) which are invariant with respect to the $N$-th Novikovs equation and such that the quotient algebra $mathfrak{C}_N = mathfrak{B}_Ndiagup mathfrak{Q}_N$ has a well defined Poincare-Birkhoff-Witt basis. It enables us to define the quantum $N$-th Novikovs equation on the $mathfrak{C}_N$. We have shown that the quantum $N$-th Novikovs equation and its finite hierarchy can be written in the standard Heisenberg form.
We study higher order KdV equations from the GL(2,$mathbb{R}$) $cong$ SO(2,1) Lie group point of view. We find elliptic solutions of higher order KdV equations up to the ninth order. We argue that the main structure of the trigonometric/hyperbolic/elliptic $N$-soliton solutions for higher order KdV equations is the same as that of the original KdV equation. Pointing out that the difference is only the time dependence, we find $N$-soliton solutions of higher order KdV equations can be constructed from those of the original KdV equation by properly replacing the time-dependence. We discuss that there always exist elliptic solutions for all higher order KdV equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا