Do you want to publish a course? Click here

Generalized synchronization of chaos in non-invertible maps

79   0   0.0 ( 0 )
 Added by Nikolai Rulkov
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

The properties of functional relation between a non-invertible chaotic drive and a response map in the regime of generalized synchronization of chaos are studied. It is shown that despite a very fuzzy image of the relation between the current states of the maps, the functional relation becomes apparent when a sufficient interval of driving trajectory is taken into account. This paper develops a theoretical framework of such functional relation and illustrates the main theoretical conclusions using numerical simulations.



rate research

Read More

We extend the concept of generalized synchronization of chaos, a phenomenon that occurs in driven dynamical systems, to the context of autonomous spatiotemporal systems. It means a situation where the chaotic state variables in an autonomous system can be synchronized to each other but not to a coupling function defined from them. The form of the coupling function is not crucial; it may not depend on all the state variables nor it needs to be active for all times for achieving generalized synchronization. The procedure is based on the analogy between a response map subject to an external drive acting with a probability p and an autonomous system of coupled maps where a global interaction between the maps takes place with this same probability. It is shown that, under some circumstances, the conditions for stability of generalized synchronized states are equivalent in both types of systems. Our results reveal the existence of similar minimal conditions for the emergence of generalized synchronization of chaos in driven and in autonomous spatiotemporal systems.
Complexity of dynamical networks can arise not only from the complexity of the topological structure but also from the time evolution of the topology. In this paper, we study the synchronous motion of coupled maps in time-varying complex networks both analytically and numerically. The temporal variation is rather general and formalized as being driven by a metric dynamical system. Four network models are discussed in detail in which the interconnections between vertices vary through time randomly. These models are 1) i.i.d. sequences of random graphs with fixed wiring probability, 2) groups of graphs with random switches between the individual graphs, 3) graphs with temporary random failures of nodes, and 4) the meet-for-dinner model where the vertices are randomly grouped. We show that the temporal variation and randomness of the connection topology can enhance synchronizability in many cases; however, there are also instances where they reduce synchronizability. In analytical terms, the Hajnal diameter of the coupling matrix sequence is presented as a measure for the synchronizability of the graph topology. In topological terms, the decisive criterion for synchronization of coupled chaotic maps is that the union of the time-varying graphs contains a spanning tree.
Small networks of chaotic units which are coupled by their time-delayed variables, are investigated. In spite of the time delay, the units can synchronize isochronally, i.e. without time shift. Moreover, networks can not only synchronize completely, but can also split into different synchronized sublattices. These synchronization patterns are stable attractors of the network dynamics. Different networks with their associated behaviors and synchronization patterns are presented. In particular, we investigate sublattice synchronization, symmetry breaking, spreading chaotic motifs, synchronization by restoring symmetry and cooperative pairwise synchronization of a bipartite tree.
The behavior of two unidirectionally coupled chaotic oscillators near the generalized synchronization onset has been considered. The character of the boundaries of the generalized synchronization regime has been explained by means of the modified system
This paper provides a unified method for analyzing chaos synchronization of the generalized Lorenz systems. The considered synchronization scheme consists of identical master and slave generalized Lorenz systems coupled by linear state error variables. A sufficient synchronization criterion for a general linear state error feedback controller is rigorously proven by means of linearization and Lyapunovs direct methods. When a simple linear controller is used in the scheme, some easily implemented algebraic synchronization conditions are derived based on the upper and lower bounds of the master chaotic system. These criteria are further optimized to improve their sharpness. The optimized criteria are then applied to four typical generalized Lorenz systems, i.e. the classical Lorenz system, the Chen system, the Lv system and a unified chaotic system, obtaining precise corresponding synchronization conditions. The advantages of the new criteria are revealed by analytically and numerically comparing their sharpness with that of the known criteria existing in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا