We study (2+1)-dimensional multicomponent spatial vector solitons with a nontrivial topological structure of their constituents, and demonstrate that these solitary waves exhibit a symmetry-breaking instability provided their total topological charge is nonzero. We describe a novel type of stable multicomponent dipole-mode solitons with intriguing swinging dynamics.
We report on the first experimental observation of a novel type of optical vector soliton, a {em dipole-mode soliton}, recently predicted theoretically. We show that these vector solitons can be generated in a photorefractive medium employing two different processes: a phase imprinting, and a symmetry-breaking instability of a vortex-mode vector soliton. The experimental results display remarkable agreement with the theory, and confirm the robust nature of these radially asymmetric two-component solitary waves.
A stable nonlinear wave packet, self-localized in all three dimensions, is an intriguing and much sought after object in nonlinear science in general and in nonlinear photonics in particular. We report on the experimental observation of mode-locked spatial laser solitons in a vertical-cavity surface-emitting laser with frequency-selective feedback from an external cavity. These spontaneously emerging and long-term stable spatio-temporal structures have a pulse length shorter than the cavity round trip time and may pave the way to completely independent cavity light bullets.
We theoretically introduce a new type of topological dipole solitons propagating in a Floquet topological insulator based on a kagome array of helical waveguides. Such solitons bifurcate from two edge states belonging to different topological gaps and have bright envelopes of different symmetries: fundamental for one component, and dipole for the other. The formation of dipole solitons is enabled by unique spectral features of the kagome array which allow the simultaneous coexistence of two topological edge states from different gaps at the same boundary. Notably, these states have equal and nearly vanishing group velocities as well as the same sign of the effective dispersion coefficients. We derive envelope equations describing components of dipole solitons and demonstrate in full continuous simulations that such states indeed can survive over hundreds of helix periods without any noticeable radiation into the bulk.
Spatial solitons can exist in various kinds of nonlinear optical resonators with and without amplification. In the past years different types of these localized structures such as vortices, bright, dark solitons and phase solitons have been experimentally shown to exist. Many links appear to exist to fields different from optics, such as fluids, phase transitions or particle physics. These spatial resonator solitons are bistable and due to their mobility suggest schemes of information processing not possible with the fixed bistable elements forming the basic ingredient of traditional electronic processing. The recent demonstration of existence and manipulation of spatial solitons in emiconductor microresonators represents a step in the direction of such optical parallel processing applications. We review pattern formation and solitons in a general context, show some proof of principle soliton experiments on slow systems, and describe in more detail the experiments on semiconductor resonator solitons which are aimed at applications.
We introduce the simplest one-dimensional nonlinear model with the parity-time (PT) symmetry, which makes it possible to find exact analytical solutions for localized modes (solitons). The PT-symmetric element is represented by a point-like (delta-functional) gain-loss dipole {delta}^{prime}(x), combined with the usual attractive potential {delta}(x). The nonlinearity is represented by self-focusing (SF) or self-defocusing (SDF) Kerr terms, both spatially uniform and localized ones. The system can be implemented in planar optical waveguides. For the sake of comparison, also introduced is a model with separated {delta}-functional gain and loss, embedded into the linear medium and combined with the {delta}-localized Kerr nonlinearity and attractive potential. Full analytical solutions for pinned modes are found in both models. The exact solutions are compared with numerical counterparts, which are obtained in the gain-loss-dipole model with the {delta}^{prime}- and {delta}- functions replaced by their Lorentzian regularization. With the increase of the dipoles strength, {gamma}, the single-peak shape of the numerically found mode, supported by the uniform SF nonlinearity, transforms into a double-peak one. This transition coincides with the onset of the escape instability of the pinned soliton. In the case of the SDF uniform nonlinearity, the pinned modes are stable, keeping the single-peak shape.
Anton S. Desyatnikov
,Yuri S. Kivshar (Nonlinear Physics Group
,n Research School of Physical Sciences
.
(2002)
.
"Multicomponent dipole-mode spatial solitons"
.
Anton S. Desyatnikov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا