No Arabic abstract
We introduce the simplest one-dimensional nonlinear model with the parity-time (PT) symmetry, which makes it possible to find exact analytical solutions for localized modes (solitons). The PT-symmetric element is represented by a point-like (delta-functional) gain-loss dipole {delta}^{prime}(x), combined with the usual attractive potential {delta}(x). The nonlinearity is represented by self-focusing (SF) or self-defocusing (SDF) Kerr terms, both spatially uniform and localized ones. The system can be implemented in planar optical waveguides. For the sake of comparison, also introduced is a model with separated {delta}-functional gain and loss, embedded into the linear medium and combined with the {delta}-localized Kerr nonlinearity and attractive potential. Full analytical solutions for pinned modes are found in both models. The exact solutions are compared with numerical counterparts, which are obtained in the gain-loss-dipole model with the {delta}^{prime}- and {delta}- functions replaced by their Lorentzian regularization. With the increase of the dipoles strength, {gamma}, the single-peak shape of the numerically found mode, supported by the uniform SF nonlinearity, transforms into a double-peak one. This transition coincides with the onset of the escape instability of the pinned soliton. In the case of the SDF uniform nonlinearity, the pinned modes are stable, keeping the single-peak shape.
We study the existence and stability of fundamental bright discrete solitons in a parity-time (PT)-symmetric coupler composed by a chain of dimers, that is modelled by linearly coupled discrete nonlinear Schrodinger equations with gain and loss terms. We use a perturbation theory for small coupling between the lattices to perform the analysis, which is then confirmed by numerical calculations. Such analysis is based on the concept of the so-called anti-continuum limit approach. We consider the fundamental onsite and intersite bright solitons. Each solution has symmetric and antisymmetric configurations between the arms. The stability of the solutions is then determined by solving the corresponding eigenvalue problem. We obtain that both symmetric and antisymmetric onsite mode can be stable for small coupling, on the contrary of the reported continuum limit where the antisymmetric solutions are always unstable. The instability is either due to the internal modes crossing the origin or the appearance of a quartet of complex eigenvalues. In general, the gain-loss term can be considered parasitic as it reduces the stability region of the onsite solitons. Additionally, we analyse the dynamic behaviour of the onsite and intersite solitons when unstable, where typically it is either in the form of travelling solitons or soliton blow-ups.
We prove existence of discrete solitons in infinite parity-time (PT-) symmetric lattices by means of analytical continuation from the anticontinuum limit. The energy balance between dissipation and gain implies that in the anticontinuum limit the solitons are constructed from elementary PT-symmetric blocks such as dimers, quadrimers, or more general oligomers. We consider in detail a chain of coupled dimers, analyze bifurcations of discrete solitons from the anticontinuum limit and show that the solitons are stable in a sufficiently large region of the lattice parameters. The generalization of the approach is illustrated on two examples of networks of quadrimers, for which stable discrete solitons are also found.
The dilation method is an important and useful way in experimentally simulating non-Hermitian, especially $cal PT$-symmetric systems. However, the time dependent dilation problem cannot be explicitly solved in general. In this paper, we consider a special two dimensional time dependent $cal PT$-symmetric system, which is initially set in the unbroken $cal PT$-symmetric phase and later goes across the exceptional point and enters the broken $cal PT$-symmetric phase. For this system, the dilation Hamiltonian and the evolution of $cal PT$-symmetric system are analytically worked out.
This note examines Gross-Pitaevskii equations with PT-symmetric potentials of the Wadati type: $V=-W^2+iW_x$. We formulate a recipe for the construction of Wadati potentials supporting exact localised solutions. The general procedure is exemplified by equations with attractive and repulsive cubic nonlinearity bearing a variety of bright and dark solitons.
We report the role of $mathcal{PT}$-symmetry in switching characteristics of a highly nonlinear fiber Bragg grating (FBG) with cubic-quintic-septic nonlinearities. We demonstrate that the device shows novel bi-(multi-) stable states in the broken regime as a direct consequence of the shift in the photonic band gap influenced by both $mathcal{PT}$-symmetry and higher-order nonlinearities. We also numerically depict that such FBGs provide a productive test bed where the broken $mathcal{PT}$-symmetric regime can be exploited to set up all-optical applications such as binary switches, multi-level signal processing and optical computing. Unlike optical bistability (OB) in the traditional and unbroken $mathcal{PT}$-symmetric FBG, it exhibits many peculiar features such as flat-top stable states and ramp like input-output characteristics before the onset of OB phenomenon in the broken regime. The gain/loss parameter plays a dual role in controlling the switching intensities between the stable states which is facilitated by reversing the direction of light incidence. We also find that the gain/loss parameter tailors the formation of gap solitons pertaining to transmission resonances which clearly indicates that it can be employed to set up optical storage devices. Moreover, the interplay between gain/loss and higher order nonlinearities brings notable changes in the nonlinear reflection spectra of the system under constant pump powers. The influence of each control parameters on the switching operation is also presented in a nutshell to validate that FBG offers more degrees of freedom in controlling light with light.