Do you want to publish a course? Click here

Spatial Resonator Solitons

66   0   0.0 ( 0 )
 Added by Victor Taranenko
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spatial solitons can exist in various kinds of nonlinear optical resonators with and without amplification. In the past years different types of these localized structures such as vortices, bright, dark solitons and phase solitons have been experimentally shown to exist. Many links appear to exist to fields different from optics, such as fluids, phase transitions or particle physics. These spatial resonator solitons are bistable and due to their mobility suggest schemes of information processing not possible with the fixed bistable elements forming the basic ingredient of traditional electronic processing. The recent demonstration of existence and manipulation of spatial solitons in emiconductor microresonators represents a step in the direction of such optical parallel processing applications. We review pattern formation and solitons in a general context, show some proof of principle soliton experiments on slow systems, and describe in more detail the experiments on semiconductor resonator solitons which are aimed at applications.



rate research

Read More

We study (2+1)-dimensional multicomponent spatial vector solitons with a nontrivial topological structure of their constituents, and demonstrate that these solitary waves exhibit a symmetry-breaking instability provided their total topological charge is nonzero. We describe a novel type of stable multicomponent dipole-mode solitons with intriguing swinging dynamics.
A stable nonlinear wave packet, self-localized in all three dimensions, is an intriguing and much sought after object in nonlinear science in general and in nonlinear photonics in particular. We report on the experimental observation of mode-locked spatial laser solitons in a vertical-cavity surface-emitting laser with frequency-selective feedback from an external cavity. These spontaneously emerging and long-term stable spatio-temporal structures have a pulse length shorter than the cavity round trip time and may pave the way to completely independent cavity light bullets.
We study the propagation of quasi-discrete microwave solitons in a nonlinear left-handed coplanar waveguide coupled with split ring resonators. By considering the relevant transmission line analogue, we derive a nonlinear lattice model which is studied analytically by means of a quasi-discrete approximation. We derive a nonlinear Schr{o}dinger equation, and find that the system supports bright envelope soliton solutions in a relatively wide subinterval of the left-handed frequency band. We perform systematic numerical simulations, in the framework of the nonlinear lattice model, to study the propagation properties of the quasi-discrete microwave solitons. Our numerical findings are in good agreement with the analytical predictions, and suggest that the predicted structures are quite robust and may be observed in experiments.
We present eight types of spatial optical solitons which are possible in a model of a planar waveguide that includes a dual-channel trapping structure and competing (cubic-quintic) nonlinearity. Among the families of trapped beams are symmetric and antisymmetric solitons of broad and narrow types, composite states, built as combinations of broad and narrow beams with identical or opposite signs (unipolar and bipolar states, respectively), and single-sided broad and narrow beams trapped, essentially, in a single channel. The stability of the families is investigated via eigenvalues of small perturbations, and is verified in direct simulations. Three species - narrow symmetric, broad antisymmetric, and unipolar composite states - are unstable to perturbations with real eigenvalues, while the other five families are stable. The unstable states do not decay, but, instead, spontaneously transform themselves into persistent breathers, which, in some cases, demonstrate dynamical symmetry breaking and chaotic internal oscillations. A noteworthy feature is a stability exchange between the broad and narrow antisymmetric states: in the limit when the two channels merge into one, the former species becomes stable, while the latter one loses its stability. Different branches of the stationary states are linked by four bifurcations, which take different forms in the model with the strong and weak inter-channel coupling.
We study solitons in the two-dimensional defocusing nonlinear Schroedinger equation with the spatio-temporal modulation of the external potential. The spatial modulation is due to a square lattice; the resulting macroscopic diffraction is rotationally symmetric in the long-wavelength limit but becomes anisotropic for shorter wavelengths. Anisotropic solitons -- solitons with the square (x,y)-geometry -- are obtained both in the original nonlinear Schroedinger model and in its averaged amplitude equation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا