Do you want to publish a course? Click here

Motivic proof of a character formula for SL(2)

89   0   0.0 ( 0 )
 Added by Clifton Cunningham
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We give a motivic proof of a character formula for depth zero supercuspidal representations of $p$-adic SL(2). We begin by finding the virtual Chow motives for the character values of all depth zero supercuspidal representations of $p$-adic SL(2), at topologically unipotent elements. Then we find the virtual Chow motives for the values of the Fourier transform of all regular elliptic orbital integrals with depth zero in their Cartan subalgebra, at topologically nilpotent elements. Finally, we prove a character formula for depth zero supercuspidal representations by showing that the formula corresponds to three identities in the ring of virtual Chow motives over $mathbb{Q}$.



rate research

Read More

65 - Arthur Forey 2017
In this note, we establish a version of the local Cauchy-Crofton formula for definable sets in Henselian discretely valued fields of characteristic zero. It allows to compute the motivic local density of a set from the densities of its projections integrated over the Grassmannian.
We generalize a result by Cunningham-Salmasian to a Mackey-type formula for the compact restriction of a semisimple perverse sheaf produced by parabolic induction from a character sheaf, under certain conditions on the parahoric group used to define compact restriction. This provides new tools for matching character sheaves with admissible representations.
162 - Matthias Ludewig , Zelin Yi 2020
In this note, we give a short proof of the localization formula for the loop space Chern character of a compact Riemannian spin manifold M, using the rescaled spinor bundle on the tangent groupoid associated to M.
Let B be a reductive Lie subalgebra of a semi-simple Lie algebra of the same rank both over the complex numbers. To each finite dimensional irreducible representation $V_lambda$ of F we assign a multiplet of irreducible representations of B with m elements in each multiplet, where m is the index of the Weyl group of B in the Weyl group of F. We obtain a generalization of the Weyl character formula; our formula gives the character of $V_lambda$ as a quotient whose numerator is an alternating sum of the characters in the multiplet associated to $V_lambda$ and whose denominator is an alternating sum of the characters of the multiplet associated to the trivial representation of F.
We compute the Hodge-Deligne polynomials of the moduli spaces of representations of the fundamental group of a complex surface into SL(2,C), for the case of small genus g, and allowing the holonomy around a fixed point to be any matrix of SL(2,C), that is Id, -Id, diagonalisable, or of either of the two Jordan types. For this, we introduce a new geometric technique, based on stratifying the space of representations, and on the analysis of the behaviour of the Hodge-Deligne polynomial under fibrations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا