Do you want to publish a course? Click here

A motivic local Cauchy-Crofton formula

66   0   0.0 ( 0 )
 Added by Arthur Forey
 Publication date 2017
  fields
and research's language is English
 Authors Arthur Forey




Ask ChatGPT about the research

In this note, we establish a version of the local Cauchy-Crofton formula for definable sets in Henselian discretely valued fields of characteristic zero. It allows to compute the motivic local density of a set from the densities of its projections integrated over the Grassmannian.



rate research

Read More

We give a motivic proof of a character formula for depth zero supercuspidal representations of $p$-adic SL(2). We begin by finding the virtual Chow motives for the character values of all depth zero supercuspidal representations of $p$-adic SL(2), at topologically unipotent elements. Then we find the virtual Chow motives for the values of the Fourier transform of all regular elliptic orbital integrals with depth zero in their Cartan subalgebra, at topologically nilpotent elements. Finally, we prove a character formula for depth zero supercuspidal representations by showing that the formula corresponds to three identities in the ring of virtual Chow motives over $mathbb{Q}$.
119 - Arthur Forey , Yimu Yin 2019
We construct a new motivic integration morphism, the so-call bounded integral, that interpolates both the integration morphisms with and without volume forms of Hrushovski and Kazhdan. This is done within the framework of model theory of algebraically closed valued fields of equicharacteristic zero. As an application, we recover and extend some results of Hrushovski and Loeser about the motivic Milnor fiber.
We study which quadratic forms are representable as the local degree of a map $f : A^n to A^n$ with an isolated zero at $0$, following the work of Kass and Wickelgren who established the connection to the quadratic form of Eisenbud, Khimshiashvili, and Levine. Our main observation is that over some base fields $k$, not all quadratic forms are representable as a local degree. Empirically the local degree of a map $f : A^n to A^n$ has many hyperbolic summands, and we prove that in fact this is the case for local degrees of low rank. We establish a complete classification of the quadratic forms of rank at most $7$ that are representable as the local degree of a map over all base fields of characteristic different from $2$. The number of hyperbolic summands was also studied by Eisenbud and Levine, where they establish general bounds on the number of hyperbolic forms that must appear in a quadratic form that is representable as a local degree. Our proof method is elementary and constructive in the case of rank 5 local degrees, while the work of Eisenbud and Levine is more general. We provide further families of examples that verify that the bounds of Eisenbud and Levine are tight in several cases.
108 - Arthur Forey 2015
We develop a theory of local densities and tangent cones in a motivic framework, extending work by Cluckers-Comte-Loeser about $p$-adic local density. We prove some results about geometry of definable sets in Henselian valued fields of characteristic zero, both in semi-algebraic and subanalytic languages, and study Lipschitz continuous maps between such sets. We prove existence of regular stratifications satisfying analogous of Verdier condition $(w_f)$. Using Cluckers-Loeser theory of motivic integration, we define a notion of motivic local density with values in the Grothendieck ring of the theory of the residue sorts. We then prove the existence of a distinguished tangent cone and that one can compute the local density on this cone endowed with appropriate motivic multiplicities. As an application we prove a uniformity theorem for $p$-adic local density.
180 - M.V. Bondarko 2007
The paper is suspended. The reason: as was noted by prof. H. Esnault, Theorem 2.1.1 of the previous version (as well as the related Theorem 6.1.1 of http://arxiv.org/PS_cache/math/pdf/9908/9908037v2.pdf of D. Arapura and P. Sastry) is wrong unless one assumes H to be a generic hyperplane section. Hence the proofs of all results starting from 2.3 contain gaps. The author hopes to correct this (somehow) in a future version. At least, most of the results follow from certain standard motivic conjectures (see part 1 of Remark 3.2.4 in the previous version). If the author would not find a way to prove Theorems 2.3.1 and 2.3.2 (without 2.1.1), then in the next version of the preprint the results of section 4 will be deduced from certain conjectures; certainly this is not a very exiting result.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا