Do you want to publish a course? Click here

Invariants for Normal Completely Positive Maps on the Hyperfinite $II_1$ Factor

81   0   0.0 ( 0 )
 Added by Lingaraj Sahu
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We investigate certain classes of normal completely positive (CP) maps on the hyperfinite $II_1$ factor $mathcal A$. Using the representation theory of a suitable irrational rotation algebra, we propose some computable invariants for such CP maps.

rate research

Read More

D. Bures had defined a metric on the set of normal states on a von Neumann algebra using GNS representations of states. This notion has been extended to completely positive maps between $C^*$-algebras by D. Kretschmann, D. Schlingemann and R. F. Werner. We present a Hilbert $C^*$-module version of this theory. We show that we do get a metric when the completely positive maps under consideration map to a von Neumann algebra. Further, we include several examples and counter examples. We also prove a rigidity theorem, showing that representation modules of completely positive maps which are close to the identity map contain a copy of the original algebra.
A matrix convex set is a set of the form $mathcal{S} = cup_{ngeq 1}mathcal{S}_n$ (where each $mathcal{S}_n$ is a set of $d$-tuples of $n times n$ matrices) that is invariant under UCP maps from $M_n$ to $M_k$ and under formation of direct sums. We study the geometry of matrix convex sets and their relationship to completely positive maps and dilation theory. Key ingredients in our approach are polar duality in the sense of Effros and Winkler, matrix ranges in the sense of Arveson, and concrete constructions of scaled commuting normal dilation for tuples of self-adjoint operators, in the sense of Helton, Klep, McCullough and Schweighofer. Given two matrix convex sets $mathcal{S} = cup_{n geq 1} mathcal{S}_n,$ and $mathcal{T} = cup_{n geq 1} mathcal{T}_n$, we find geometric conditions on $mathcal{S}$ or on $mathcal{T}$, such that $mathcal{S}_1 subseteq mathcal{T}_1$ implies that $mathcal{S} subseteq Cmathcal{S}$ for some constant $C$. For instance, under various symmetry conditions on $mathcal{S}$, we can show that $C$ above can be chosen to equal $d$, the number of variables, and in some cases this is sharp. We also find an essentially unique self-dual matrix convex set $mathcal{D}$, the self-dual matrix ball, for which corresponding inclusion and dilation results hold with constant $C=sqrt{d}$. Our results have immediate implications to spectrahedral inclusion problems studied recently by Helton, Klep, McCullough and Schweighofer. Our constants do not depend on the ranks of the pencils determining the free spectrahedra in question, but rather on the number of variables $d$. There are also implications to the problem of existence of (unital) completely positive maps with prescribed values on a set of operators.
In a recent work, Moslehian and Rajic have shown that the Gruss inequality holds for unital n-positive linear maps $phi:mathcal A rightarrow B(H)$, where $mathcal A$ is a unital C*-algebra and H is a Hilbert space, if $n ge 3$. They also demonstrate that the inequality fails to hold, in general, if $n = 1$ and question whether the inequality holds if $n=2$. In this article, we provide an affirmative answer to this question.
We provide a description of certain invariance properties of completely bounded bimodule maps in terms of their symbols. If $mathbb{G}$ is a locally compact quantum group, we characterise the completely bounded $L^{infty}(mathbb{G})$-bimodule maps that send $C_0(hat{mathbb{G}})$ into $L^{infty}(hat{mathbb{G}})$ in terms of the properties of the corresponding elements of the normal Haagerup tensor product $L^{infty}(mathbb{G}) otimes_{sigma{rm h}} L^{infty}(mathbb{G})$. As a consequence, we obtain an intrinsic characterisation of the normal completely bounded $L^{infty}(mathbb{G})$-bimodule maps that leave $L^{infty}(hat{mathbb{G}})$ invariant, extending and unifying results, formulated in the current literature separately for the commutative and the co-commutative cases.
125 - Christopher J. Wood 2009
We investigate the evolution of open quantum systems in the presence of initial correlations with an environment. Here the standard formalism of describing evolution by completely positive trace preserving (CPTP) quantum operations can fail and non-completely positive (non-CP) maps may be observed. A new classification of correlations between a system and environment using quantum discord is explored. However, we find quantum discord is not a symmetric quantity between exchange of systems and this leads to ambiguity in classifications - states which are both quantum and classically correlated depending on the order of the two systems. State preparation in quantum process tomography is investigated with regard to non-CP maps. In SQPT the preparation procedure can influence the complete-positivity of the reconstructed quantum operation if our system is initially correlated with an environment. We examine a recently proposed preparation procedures using projective measurements, and propose our own protocol that uses a single measurement followed by unitary rotations. The former can give rise to non-CP evolution while the later will always give rise to a CP map. State preparation in AAPT was found always to give rise to CP evolution. We examine the effect of statistical noise in process tomography and find it can result in the identification of a non-CP when the evolution should be CP. The variance of the distribution for reconstructed processes is found to be inversely proportional to the number of copies of a state used to perform tomography. Finally, we detail an experiment using currently available linear optics QC devices to demonstrate non-CP maps arising in SQPT.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا