No Arabic abstract
In a recent work, Moslehian and Rajic have shown that the Gruss inequality holds for unital n-positive linear maps $phi:mathcal A rightarrow B(H)$, where $mathcal A$ is a unital C*-algebra and H is a Hilbert space, if $n ge 3$. They also demonstrate that the inequality fails to hold, in general, if $n = 1$ and question whether the inequality holds if $n=2$. In this article, we provide an affirmative answer to this question.
D. Bures had defined a metric on the set of normal states on a von Neumann algebra using GNS representations of states. This notion has been extended to completely positive maps between $C^*$-algebras by D. Kretschmann, D. Schlingemann and R. F. Werner. We present a Hilbert $C^*$-module version of this theory. We show that we do get a metric when the completely positive maps under consideration map to a von Neumann algebra. Further, we include several examples and counter examples. We also prove a rigidity theorem, showing that representation modules of completely positive maps which are close to the identity map contain a copy of the original algebra.
A matrix convex set is a set of the form $mathcal{S} = cup_{ngeq 1}mathcal{S}_n$ (where each $mathcal{S}_n$ is a set of $d$-tuples of $n times n$ matrices) that is invariant under UCP maps from $M_n$ to $M_k$ and under formation of direct sums. We study the geometry of matrix convex sets and their relationship to completely positive maps and dilation theory. Key ingredients in our approach are polar duality in the sense of Effros and Winkler, matrix ranges in the sense of Arveson, and concrete constructions of scaled commuting normal dilation for tuples of self-adjoint operators, in the sense of Helton, Klep, McCullough and Schweighofer. Given two matrix convex sets $mathcal{S} = cup_{n geq 1} mathcal{S}_n,$ and $mathcal{T} = cup_{n geq 1} mathcal{T}_n$, we find geometric conditions on $mathcal{S}$ or on $mathcal{T}$, such that $mathcal{S}_1 subseteq mathcal{T}_1$ implies that $mathcal{S} subseteq Cmathcal{S}$ for some constant $C$. For instance, under various symmetry conditions on $mathcal{S}$, we can show that $C$ above can be chosen to equal $d$, the number of variables, and in some cases this is sharp. We also find an essentially unique self-dual matrix convex set $mathcal{D}$, the self-dual matrix ball, for which corresponding inclusion and dilation results hold with constant $C=sqrt{d}$. Our results have immediate implications to spectrahedral inclusion problems studied recently by Helton, Klep, McCullough and Schweighofer. Our constants do not depend on the ranks of the pencils determining the free spectrahedra in question, but rather on the number of variables $d$. There are also implications to the problem of existence of (unital) completely positive maps with prescribed values on a set of operators.
We study the symmetrized noncommutative arithmetic geometric mean inequality introduced(AGM) by Recht and R{e} $$ |frac{(n-d)!}{n!}sumlimits_{{ j_1,...,j_d mbox{ different}} }A_{j_{1}}^*A_{j_{2}}^*...A_{j_{d}}^*A_{j_{d}}...A_{j_{2}}A_{j_{1}} | leq C(d,n) |frac{1}{n} sum_{j=1}^n A_j^*A_j|^d .$$ Complementing the results from Recht and R{e}, we find upper bounds for C(d,n) under additional assumptions. Moreover, using free probability, we show that $C(d, n) > 1$, thereby disproving the most optimistic conjecture from Recht and R{e}.We also prove a deviation result for the symmetrized-AGM inequality which shows that the symmetric inequality almost holds for many classes of random matrices. Finally we apply our results to the incremental gradient method(IGM).
In this article, we explore the celebrated Gr{u}ss inequality, where we present a new approach using the Gr{u}ss inequality to obtain new refinements of operator means inequalities. We also present several operator Gr{u}ss-type inequalities with applications to the numerical radius and entropies.
In this article, we give an abstract characterization of the ``identity of an operator space $V$ by looking at a quantity $n_{cb}(V,u)$ which is defined in analogue to a well-known quantity in Banach space theory. More precisely, we show that there exists a complete isometry from $V$ to some $mathcal{L}(H)$ sending $u$ to ${rm id}_H$ if and only if $n_{cb}(V,u) =1$. We will use it to give an abstract characterization of operator systems. Moreover, we will show that if $V$ is a unital operator space and $W$ is a proper complete $M$-ideal, then $V/W$ is also a unital operator space. As a consequece, the quotient of an operator system by a proper complete $M$-ideal is again an operator system. In the appendix, we will also give an abstract characterisation of ``non-unital operator systems using an idea arose from the definition of $n_{cb}(V,u)$.