Do you want to publish a course? Click here

Dilations, inclusions of matrix convex sets, and completely positive maps

71   0   0.0 ( 0 )
 Added by Orr Shalit
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

A matrix convex set is a set of the form $mathcal{S} = cup_{ngeq 1}mathcal{S}_n$ (where each $mathcal{S}_n$ is a set of $d$-tuples of $n times n$ matrices) that is invariant under UCP maps from $M_n$ to $M_k$ and under formation of direct sums. We study the geometry of matrix convex sets and their relationship to completely positive maps and dilation theory. Key ingredients in our approach are polar duality in the sense of Effros and Winkler, matrix ranges in the sense of Arveson, and concrete constructions of scaled commuting normal dilation for tuples of self-adjoint operators, in the sense of Helton, Klep, McCullough and Schweighofer. Given two matrix convex sets $mathcal{S} = cup_{n geq 1} mathcal{S}_n,$ and $mathcal{T} = cup_{n geq 1} mathcal{T}_n$, we find geometric conditions on $mathcal{S}$ or on $mathcal{T}$, such that $mathcal{S}_1 subseteq mathcal{T}_1$ implies that $mathcal{S} subseteq Cmathcal{S}$ for some constant $C$. For instance, under various symmetry conditions on $mathcal{S}$, we can show that $C$ above can be chosen to equal $d$, the number of variables, and in some cases this is sharp. We also find an essentially unique self-dual matrix convex set $mathcal{D}$, the self-dual matrix ball, for which corresponding inclusion and dilation results hold with constant $C=sqrt{d}$. Our results have immediate implications to spectrahedral inclusion problems studied recently by Helton, Klep, McCullough and Schweighofer. Our constants do not depend on the ranks of the pencils determining the free spectrahedra in question, but rather on the number of variables $d$. There are also implications to the problem of existence of (unital) completely positive maps with prescribed values on a set of operators.



rate research

Read More

D. Bures had defined a metric on the set of normal states on a von Neumann algebra using GNS representations of states. This notion has been extended to completely positive maps between $C^*$-algebras by D. Kretschmann, D. Schlingemann and R. F. Werner. We present a Hilbert $C^*$-module version of this theory. We show that we do get a metric when the completely positive maps under consideration map to a von Neumann algebra. Further, we include several examples and counter examples. We also prove a rigidity theorem, showing that representation modules of completely positive maps which are close to the identity map contain a copy of the original algebra.
We provide a description of certain invariance properties of completely bounded bimodule maps in terms of their symbols. If $mathbb{G}$ is a locally compact quantum group, we characterise the completely bounded $L^{infty}(mathbb{G})$-bimodule maps that send $C_0(hat{mathbb{G}})$ into $L^{infty}(hat{mathbb{G}})$ in terms of the properties of the corresponding elements of the normal Haagerup tensor product $L^{infty}(mathbb{G}) otimes_{sigma{rm h}} L^{infty}(mathbb{G})$. As a consequence, we obtain an intrinsic characterisation of the normal completely bounded $L^{infty}(mathbb{G})$-bimodule maps that leave $L^{infty}(hat{mathbb{G}})$ invariant, extending and unifying results, formulated in the current literature separately for the commutative and the co-commutative cases.
Evenly convex sets in a topological vector space are defined as the intersection of a family of open half spaces. We introduce a generalization of this concept in the conditional framework and provide a generalized version of the bipolar theorem. This notion is then applied to obtain the dual representation of conditionally evenly quasi-convex maps.
195 - Malte Gerhold , Orr Shalit 2019
Let $q = e^{i theta} in mathbb{T}$ (where $theta in mathbb{R}$), and let $u,v$ be $q$-commuting unitaries, i.e., $u$ and $v$ are unitaries such that $vu = quv$. In this paper we find the optimal constant $c = c_theta$ such that $u,v$ can be dilated to a pair of operators $c U, c V$, where $U$ and $V$ are commuting unitaries. We show that [ c_theta = frac{4}{|u_theta+u_theta^*+v_theta+v_theta^*|}, ] where $u_theta, v_theta$ are the universal $q$-commuting pair of unitaries, and we give numerical estimates for the above quantity. In the course of our proof, we also consider dilating $q$-commuting unitaries to scalar multiples of $q$-commuting unitaries. The techniques that we develop allow us to give new and simple dilation theoretic proofs of well known results regarding the continuity of the field of rotations algebras. In particular, for the so-called Almost Mathieu Operator $h_theta = u_theta+u_theta^*+v_theta+v_theta^*$, we recover the fact that the norm $|h_theta|$ is a Lipshitz continuous function of $theta$, as well as the result that the spectrum $sigma(h_theta)$ is a $frac{1}{2}$-Holder continuous function in $theta$ with respect to the Hausdorff metric. In fact, we obtain this Holder continuity of the spectrum for every selfadjoint $*$-polynomial $p(u_theta,v_theta)$, which in turn endows the rotation algebras with the natural structure of a continuous field of C*-algebras.
We investigate certain classes of normal completely positive (CP) maps on the hyperfinite $II_1$ factor $mathcal A$. Using the representation theory of a suitable irrational rotation algebra, we propose some computable invariants for such CP maps.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا