Do you want to publish a course? Click here

The fundamental groups of subsets of closed surfaces inject into their first shape groups

82   0   0.0 ( 0 )
 Added by Hanspeter Fischer
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We show that for every subset X of a closed surface M^2 and every basepoint x_0, the natural homomorphism from the fundamental group to the first shape homotopy group, is injective. In particular, if X is a proper compact subset of M^2, then pi_1(X,x_0) is isomorphic to a subgroup of the limit of an inverse sequence of finitely generated free groups; it is therefore locally free, fully residually free and residually finite.



rate research

Read More

In this paper we study the generic, i.e., typical, behavior of finitely generated subgroups of hyperbolic groups and also the generic behavior of the word problem for amenable groups. We show that a random set of elements of a nonelementary word hyperbolic group is very likely to be a set of free generators for a nicely embedded free subgroup. We also exhibit some finitely presented amenable groups for which the restriction of the word problem is unsolvable on every sufficiently large subset of words.
The characteristic index of a locally compact connected group $G$ is the non-negative integer $d$ for which we have a homeomorphism $Gcong Ktimes mathbb{R}^d$ with $Kle G$ maximal compact. We prove that the characteristic indices of closed connected subgroups are dominated by those of the ambient groups.
Given a family $F$ of subsets of a group $G$ we describe the structure of its thin-completion $tau^*(F)$, which is the smallest thin-complete family that contains $I$. A family $F$ of subsets of $G$ is called thin-complete if each $F$-thin subset of $G$ belongs to $F$. A subset $A$ of $G$ is called $F$-thin if for any distinct points $x,y$ of $G$ the intersection $xAcap yA$ belongs to the family $F$. We prove that the thin-completion of an ideal in an ideal. If $G$ is a countable non-torsion group, then the thin-completion $tau^*(F_G)$ of the ideal $F_G$ of finite subsets of $G$ is coanalytic but not Borel in the power-set $P_G$ of $G$.
A subset $D$ of an Abelian group is $decomposable$ if $emptyset e Dsubset D+D$. In the paper we give partial answer to an open problem asking whether every finite decomposable subset $D$ of an Abelian group contains a non-empty subset $Zsubset D$ with $sum Z=0$. For every $ninmathbb N$ we present a decomposable subset $D$ of cardinality $|D|=n$ in the cyclic group of order $2^n-1$ such that $sum D=0$, but $sum T e 0$ for any proper non-empty subset $Tsubset D$. On the other hand, we prove that every decomposable subset $Dsubsetmathbb R$ of cardinality $|D|le 7$ contains a non-empty subset $Zsubset D$ of cardinality $|Z|lefrac12|D|$ with $sum Z=0$. For every $ninmathbb N$ we present a subset $Dsubsetmathbb Z$ of cardinality $|D|=2n$ such that $sum Z=0$ for some subset $Zsubset D$ of cardinality $|Z|=n$ and $sum T e 0$ for any non-empty subset $Tsubset D$ of cardinality $|T|<n=frac12|D|$. Also we prove that every finite decomposable subset $D$ of an Abelian group contains two non-empty subsets $A,B$ such that $sum A+sum B=0$.
We introduce an obstruction to the existence of a coarse embedding of a given group or space into a hyperbolic group, or more generally into a hyperbolic graph of bounded degree. The condition we consider is admitting exponentially many fat bigons, and it is preserved by a coarse embedding between graphs with bounded degree. Groups with exponential growth and linear divergence (such as direct products of two groups one of which has exponential growth, solvable groups that are not virtually nilpotent, and uniform higher-rank lattices) have this property and hyperbolic graphs do not, so the former cannot be coarsely embedded into the latter. Other examples include certain lacunary hyperbolic and certain small cancellation groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا