Do you want to publish a course? Click here

Virtual Fundamental Classes of Zero Loci

72   0   0.0 ( 0 )
 Added by David Cox
 Publication date 2000
  fields
and research's language is English
 Authors David A. Cox




Ask ChatGPT about the research

Let V be a convex vector bundle over a smooth projective manifold X, and let Y be the subset of X which is the zero locus of a regular section of V. This mostly expository paper discusses a conjecture which relates the virtual fundamental classes of X and Y. Using an argument due to Gathmann, we prove a special case of the conjecture. The paper concludes with a discussion of how our conjecture relates to the mirror theorems in the literature.



rate research

Read More

245 - Adeel A. Khan 2019
We construct the etale motivic Borel-Moore homology of derived Artin stacks. Using a derived version of the intrinsic normal cone, we construct fundamental classes of quasi-smooth derived Artin stacks and demonstrate functoriality, base change, excess intersection, and Grothendieck-Riemann-Roch formulas. These classes also satisfy a general cohomological Bezout theorem which holds without any transversity hypotheses. The construction is new even for classical stacks and as one application we extend Gabbers proof of the absolute purity conjecture to Artin stacks.
109 - M. Duerr , Ch. Okonek 2004
In [DKO] we constructed virtual fundamental classes $[[ Hilb^m_V ]]$ for Hilbert schemes of divisors of topological type m on a surface V, and used these classes to define the Poincare invariant of V: (P^+_V,P^-_V): H^2(V,Z) --> Lambda^* H^1(V,Z) x Lambda^* H^1(V,Z) We conjecture that this invariant coincides with the full Seiberg-Witten invariant computed with respect to the canonical orientation data. In this note we prove that the existence of an integral curve $C subset V$ induces relations between some of these virtual fundamental classes $[[Hilb^m_V ]]$. The corresponding relations for the Poincare invariant can be considered as algebraic analoga of the fundamental relations obtained in [OS].
We determine the cycle classes of effective divisors in the compactified Hurwitz spaces of curves of genus g with a linear system of degree d that extend the Maroni divisors on the open Hurwitz space. Our approach uses Chern classes associated to a global-to-local evaluation map of a vector bundle over a generic $P^1$-bundle over the Hurwitz space.
We express nested Hilbert schemes of points and curves on a smooth projective surface as virtual resolutions of degeneracy loci of maps of vector bundles on smooth ambient spaces. We show how to modify the resulting obstruction theories to produce the virtual cycles of Vafa-Witten theory and other sheaf-counting problems. The result is an effective way of calculating invariants (VW, SW, local PT and local DT) via Thom-Porteous-like Chern class formulae.
172 - Elana Kalashnikov 2019
The classification of Fano varieties is an important open question, motivated in part by the MMP. Smooth Fano varieties have been classified up to dimension three: one interesting feature of this classification is that they can all be described as certain subvarieties in GIT quotients; in particular, they are all either toric complete intersections (subvarieties of toric varieties) or quiver flag zero loci (subvarieties of quiver flag varieties). There is a program to use mirror symmetry to classify Fano varieties in higher dimensions. Fano varieties are expected to correspond to certain Laurent polynomials under mirror symmetry; given such a Fano toric complete intersections, one can produce a Laurent polynomial via the Hori--Vafa mirror. In this paper, we give a method to find Laurent polynomial mirrors to Fano quiver flag zero loci in $Y$-shaped quiver flag varieties. To do this, we generalise the Gelfand--Cetlin degeneration of type A flag varieties to Fano $Y$-shaped quiver flag varieties, and give a new description of these degenerations as canonical toric quiver varieties. We find conjectural mirrors to 99 four dimensional Fano quiver flag zero loci, and check them up to 20 terms of the period sequence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا