We discuss the GW/DT correspondence for 3-folds in both the absolute and relative cases. Descendents in Gromov-Witten theory are conjectured to be equivalent to Chern characters of the universal sheaf in Donaldson-Thomas theory. Relative constraints in Gromov-Witten theory are conjectured to correspond in Donaldson-Thomas theory to cohomology classes of the Hilbert scheme of points of the relative divisor. Independent of the conjectural framework, we prove degree 0 formulas for the absolute and relative Donaldson-Thomas theories of toric varieties.
We conjecture an equivalence between the Gromov-Witten theory of 3-folds and the holomorphic Chern-Simons theory of Donaldson-Thomas. For Calabi-Yau 3-folds, the equivalence is defined by the change of variables, exp(iu)=-q, where u is the genus parameter of GW theory and q is charge parameter of DT theory. The conjecture is proven for local Calabi-Yau toric surfaces.
This article provides a summary of arXiv:1701.08899 and arXiv:1701.08902 where the authors studied the enumerative geometry of nested Hilbert schemes of points and curves on algebraic surfaces and their connections to threefold theories, and in particular relevant Donaldson-Thomas, Vafa-Witten and Seiberg-Witten theories.
We prove the equivariant Gromov-Witten theory of a nonsingular toric 3-fold X with primary insertions is equivalent to the equivariant Donaldson-Thomas theory of X. As a corollary, the topological vertex calculations by Agangic, Klemm, Marino, and Vafa of the Gromov-Witten theory of local Calabi-Yau toric 3-folds are proven to be correct in the full 3-leg setting.
We provide a transformation formula of non-commutative Donaldson-Thomas invariants under a composition of mutations. Consequently, we get a description of a composition of cluster transformations in terms of quiver Grassmannians. As an application, we give an alternative proof of Fomin-Zelevinskys conjectures on $F$-polynomials and $g$-vectors.
Noether-Lefschetz divisors in the moduli of K3 surfaces are the loci corresponding to Picard rank at least 2. We relate the degrees of the Noether-Lefschetz divisors in 1-parameter families of K3 surfaces to the Gromov-Witten theory of the 3-fold total space. The reduced K3 theory and the Yau-Zaslow formula play an important role. We use results of Borcherds and Kudla-Millson for O(2,19) lattices to determine the Noether-Lefschetz degrees in classical families of K3 surfaces of degrees 2, 4, 6 and 8. For the quartic K3 surfaces, the Noether-Lefschetz degrees are proven to be the Fourier coefficients of an explicitly computed modular form of weight 21/2 and level 8. The interplay with mirror symmetry is discussed. We close with a conjecture on the Picard ranks of moduli spaces of K3 surfaces.