No Arabic abstract
We derive both {em local} and {em global} generalized {em Bianchi identities} for classical Lagrangian field theories on gauge-natural bundles. We show that globally defined generalized Bianchi identities can be found without the {em a priori} introduction of a connection. The proof is based on a {em global} decomposition of the {em variational Lie derivative} of the generalized Euler--Lagrange morphism and the representation of the corresponding generalized Jacobi morphism on gauge-natural bundles. In particular, we show that {em within} a gauge-natural invariant Lagrangian variational principle, the gauge-natural lift of infinitesimal principal automorphism {em is not} intrinsically arbitrary. As a consequence the existence of {em canonical} global superpotentials for gauge-natural Noether conserved currents is proved without resorting to additional structures.
By resorting to Noethers Second Theorem, we relate the generalized Bianchi identities for Lagrangian field theories on gauge-natural bundles with the kernel of the associated gauge-natural Jacobi morphism. A suitable definition of the curvature of gauge-natural variational principles can be consequently formulated in terms of the Hamiltonian connection canonically associated with a generalized Lagrangian obtained by contracting field equations.
Higgs fields on gauge-natural prolongations of principal bundles are defined by invariant variational problems and related canonical conservation laws along the kernel of a gauge-natural Jacobi morphism.
A reductive structure is associated here with Lagrangian canonically defined conserved quantities on gauge-natural bundles. Parametrized transformations defined by the gauge-natural lift of infinitesimal principal automorphisms induce a variational sequence such that the generalized Jacobi morphism is naturally self-adjoint. As a consequence, its kernel defines a reductive split structure on the relevant underlying principal bundle.
We consider the second variational derivative of a given gauge-natural invariant Lagrangian taken with respect to (prolongations of) vertical parts of gauge-natural lifts of infinitesimal principal automorphisms. By requiring such a second variational derivative to vanish, {em via} the Second Noether Theorem we find that a covariant strongly conserved current is canonically associated with the deformed Lagrangian obtained by contracting Euler--Lagrange equations of the original Lagrangian with (prolongations of) vertical parts of gauge-natural lifts of infinitesimal principal automorphisms lying in the kernel of the generalized gauge-natural Jacobi morphism.
We consider a construction of observables by using methods of supersymmetric field theories. In particular, we give an extension of AKSZ-type observables using the Batalin-Vilkovisky structure of AKSZ theories to a formal global version with methods of formal geometry. We will consider the case where the AKSZ theory is split which will give an explicit construction for formal vector fields on base and fiber within the formal global action. Moreover, we consider the example of formal global generalized Wilson surface observables whose expectation values are invariants of higher-dimensional knots by using $BF$ field theory. These constructions give rise to interesting global gauge conditions such as the differential Quantum Master Equation and further extensions.