A reductive structure is associated here with Lagrangian canonically defined conserved quantities on gauge-natural bundles. Parametrized transformations defined by the gauge-natural lift of infinitesimal principal automorphisms induce a variational sequence such that the generalized Jacobi morphism is naturally self-adjoint. As a consequence, its kernel defines a reductive split structure on the relevant underlying principal bundle.
When a gauge-natural invariant variational principle is assigned, to determine {em canonical} covariant conservation laws, the vertical part of gauge-natural lifts of infinitesimal principal automorphisms -- defining infinitesimal variations of sections of gauge-natural bundles -- must satisfy generalized Jacobi equations for the gauge-natural invariant Lagrangian. {em Vice versa} all vertical parts of gauge-natural lifts of infinitesimal principal automorphisms which are in the kernel of generalized Jacobi morphisms are generators of canonical covariant currents and superpotentials. In particular, only a few gauge-natural lifts can be considered as {em canonical} generators of covariant gauge-natural physical charges.
In the classical Lagrangian approach to conservation laws of gauge-natural field theories a suitable (vector) density is known to generate the so--called {em conserved Noether currents}. It turns out that along any section of the relevant gauge--natural bundle this density is the divergence of a skew--symmetric (tensor) density, which is called a {em superpotential} for the conserved currents. We describe gauge--natural superpotentials in the framework of finite order variational sequences according to Krupka. We refer to previous results of ours on {em variational Lie derivatives} concerning abstra
We consider the second variational derivative of a given gauge-natural invariant Lagrangian taken with respect to (prolongations of) vertical parts of gauge-natural lifts of infinitesimal principal automorphisms. By requiring such a second variational derivative to vanish, {em via} the Second Noether Theorem we find that a covariant strongly conserved current is canonically associated with the deformed Lagrangian obtained by contracting Euler--Lagrange equations of the original Lagrangian with (prolongations of) vertical parts of gauge-natural lifts of infinitesimal principal automorphisms lying in the kernel of the generalized gauge-natural Jacobi morphism.
By resorting to Noethers Second Theorem, we relate the generalized Bianchi identities for Lagrangian field theories on gauge-natural bundles with the kernel of the associated gauge-natural Jacobi morphism. A suitable definition of the curvature of gauge-natural variational principles can be consequently formulated in terms of the Hamiltonian connection canonically associated with a generalized Lagrangian obtained by contracting field equations.
We derive both {em local} and {em global} generalized {em Bianchi identities} for classical Lagrangian field theories on gauge-natural bundles. We show that globally defined generalized Bianchi identities can be found without the {em a priori} introduction of a connection. The proof is based on a {em global} decomposition of the {em variational Lie derivative} of the generalized Euler--Lagrange morphism and the representation of the corresponding generalized Jacobi morphism on gauge-natural bundles. In particular, we show that {em within} a gauge-natural invariant Lagrangian variational principle, the gauge-natural lift of infinitesimal principal automorphism {em is not} intrinsically arbitrary. As a consequence the existence of {em canonical} global superpotentials for gauge-natural Noether conserved currents is proved without resorting to additional structures.