No Arabic abstract
We discuss the treatment of quantum-gravitational fluctuations in the space-time background as an `environment, using the formalism for open quantum-mechanical systems, which leads to a microscopic arrow of time. After reviewing briefly the open-system formalism, and the motivations for treating quantum gravity as an `environment, we present an example from general relativity and a general framework based on non-critical strings, with a Liouville field that we identify with time. We illustrate this approach with calculations in the contexts of two-dimensional models and $D$ branes. Finally, some prospects for observational tests of these ideas are mentioned.
Causality in quantum field theory is defined by the vanishing of field commutators for space-like separations. However, this does not imply a direction for causal effects. Hidden in our conventions for quantization is a connection to the definition of an arrow of causality, i.e. what is the past and what is the future. If we mix quantization conventions within the same theory, we get a violation of microcausality. In such a theory with mixed conventions the dominant definition of the arrow of causality is determined by the stable states. In some quantum gravity theories, such as quadratic gravity and possibly asymptotic safety, such a mixed causality condition occurs. We discuss some of the implications.
We consider a gravitational perturbation of the Jackiw-Teitelboim (JT) gravity with an arbitrary dilaton potential and study the condition under which the quadratic action can be seen as a $Tbar{T}$-deformation of the matter action. As a special case, the flat-space JT gravity discussed by Dubovsky et al[arXiv:1706.06604 ] is included. Another interesting example is a hyperbolic dilaton potential. This case is equivalent to a classical Liouville gravity with a negative cosmological constant and then a finite $Tbar{T}$-deformation of the matter action is realized as a gravitational perturbation on AdS$_2$.
In classical thermodynamics, heat cannot spontaneously pass from a colder system to a hotter system, which is called the thermodynamic arrow of time. However, if the initial states are entangled, the direction of the thermodynamic arrow of time may not be guaranteed. Here we take the thermofield double state at $0+1$ dimension as the initial state and assume its gravity duality to be the eternal black hole in AdS$_2$ space. We make the temperature difference between the two sides by changing the Hamiltonian. We turn on proper interaction between the two sides and calculate the changes in energy and entropy. The energy transfer, as well as the thermodynamic arrow of time, are mainly determined by the competition between two channels: thermal diffusion and anomalous heat flow. The former is not related to the wormhole and obeys the thermodynamic arrow of time; the latter is related to the wormhole and reverses the thermodynamic arrow of time, i.e. transferring energy from the colder side to the hotter side at the cost of entanglement consumption. Finally, we find that the thermal diffusion wins the competition, and the whole thermodynamic arrow of time has not been reversed.
The interplay between the diffeomorphism and conformal symmetries (a feature common in quantum field theories) is shown to be exhibited for the case of black holes in two dimensional classical Liouville theory. We show that although the theory is conformally invariant in the near horizon limit, there is a breaking of the diffeomorphism symmetry at the classical level. On the other hand, in the region away from the horizon, the conformal symmetry of the theory gets broken with the diffeomorphism symmetry remaining intact.
Using the fact that theories of gravity with asymptotically three-dimensional anti-de Sitter geometries have dual descriptions as two-dimensional conformal field theories (CFTs), we present the first study in field theory of the thermodynamic volume of various black hole solutions. We explain in general two-dimensional CFT terms why the presence of a thermodynamic volume can render certain black hole solutions super-entropic. Super-entropicity simply results from the fact that the Cardy formula, which gives the gravitational Bekenstein-Hawking entropy, can over-count the CFT entropy. The examples of charged Banados, Teitelbiom and Zanelli (BTZ) black holes and generalized exotic BTZ black holes are described. These observations help explain why the specific heat at constant volume can signal the instability of such solutions, as recently conjectured.