Do you want to publish a course? Click here

The arrow of causality and quantum gravity

72   0   0.0 ( 0 )
 Added by John F. Donoghue
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Causality in quantum field theory is defined by the vanishing of field commutators for space-like separations. However, this does not imply a direction for causal effects. Hidden in our conventions for quantization is a connection to the definition of an arrow of causality, i.e. what is the past and what is the future. If we mix quantization conventions within the same theory, we get a violation of microcausality. In such a theory with mixed conventions the dominant definition of the arrow of causality is determined by the stable states. In some quantum gravity theories, such as quadratic gravity and possibly asymptotic safety, such a mixed causality condition occurs. We discuss some of the implications.

rate research

Read More

We show how uncertainty in the causal structure of field theory is essentially inevitable when one includes quantum gravity. This includes the fact that lightcones are ill-defined in such a theory - independent of the UV completion of the theory. We include details of the causality uncertainty which arises in theories of quadratic gravity.
In recent work we showed that, for a class of conformal field theories (CFT) with Gauss-Bonnet gravity dual, the shear viscosity to entropy density ratio, $eta/s$, could violate the conjectured Kovtun-Starinets-Son viscosity bound, $eta/sgeq1/4pi$. In this paper we argue, in the context of the same model, that tuning $eta/s$ below $(16/25)(1/4pi)$ induces microcausality violation in the CFT, rendering the theory inconsistent. This is a concrete example in which inconsistency of a theory and a lower bound on viscosity are correlated, supporting the idea of a possible universal lower bound on $eta/s$ for all consistent theories.
We present an overview of the phenomenological implications of the theory of resummed quantum gravity. We discuss its prediction for the cosmological constant in the context of the Planck scale cosmology of Bonanno and Reuter, its relationship to Weinbergs asymptotic safety idea, and its relationship to Weinbergs soft graviton resummation theorem. We also discuss constraints and consistency checks of the theory.
426 - T. Banks 2003
There are many theories of quantum gravity, depending on asymptotic boundary conditions, and the amount of supersymmetry. The cosmological constant is one of the fundamental parameters that characterize different theories. If it is positive, supersymmetry must be broken. A heuristic calculation shows that a cosmological constant of the observed size predicts superpartners in the TeV range. This mechanism for SUSY breaking also puts important constraints on low energy particle physics models. This essay was submitted to the Gravity Research Foundation Competition and is based on a longer article, which will be submitted in the near future.
In the understanding of the fundamental interactions, the origin of an arrow of time is viewed as problematic. However, quantum field theory has an arrow of causality, which tells us which time direction is the past lightcone and which is the future. This direction is tied to the conventions used in the quantization procedures. The different possible causal directions have related physics - in this sense they are covariant under time-reversal. However, only one causal direction emerges for a given set of conventions. This causal arrow tells us the direction that scattering reactions proceed. The time direction of scattering in turn tells us the time direction for which entropy increases - the so-called arrow of thermodynamics. This connection is overlooked in most discussions of the arrow of time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا