Do you want to publish a course? Click here

A Renormalized Supersymmetry in the Topological Yang-Mills Field Theory

310   0   0.0 ( 0 )
 Added by Username
 Publication date 1994
  fields
and research's language is English




Ask ChatGPT about the research

We reconsider the algebraic BRS renormalization of Wittens topological Yang-Mills field theory by making use of a vector supersymmetry Ward identity which improves the finiteness properties of the model. The vector supersymmetric structure is a common feature of several topological theories. The most general local counterterm is determined and is shown to be a trivial BRS-coboundary.



rate research

Read More

The background gauge renormalization of the first order formulation of the Yang-Mills theory is studied by using the BRST identities. Together with the background symmetry, these identities allow for an iterative proof of renormalizability to all orders in perturbation theory. However, due to the fact that certain improper diagrams which violate the BRST symmetry should be removed, the renormalizability must be deduced indirectly. The recursive method involves rescalings and mixings of the fields, which lead to a renormalized effective action for the background field theory.
We study the spectrum of anomalous dimensions of operators dual to giant graviton branes. The operators considered belong to the su$(2|3)$ sector of ${cal N}=4$ super Yang-Mills theory, have a bare dimension $sim N$ and are a linear combination of restricted Schur polynomials with $psim O(1)$ long rows or columns. In the same way that the operator mixing problem in the planar limit can be mapped to an integrable spin chain, we find that our problem maps to particles hopping on a lattice. The detailed form of the model is in precise agreement with the expected world volume dynamics of $p$ giant graviton branes, which is a U$(p)$ Yang-Mills theory. The lattice model we find has a number of noteworthy features. It is a lattice model with all-to-all sites interactions and quenched disorder.
68 - Peter Austing 2001
We discuss bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. We begin by finding convergence conditions for the partition and correlation functions. Moving on, we specialise to the SU(N) models with large N. In both the Yang-Mills and cohomological formulations, we find all quantities which are invariant under the supercharges. Finally, we apply the deformation method of Moore, Nekrasov and Shatashvili directly to the Yang-Mills model. We find a deformation of the action which generates mass terms for all the matrix fields whilst preserving some supersymmetry. This allows us to rigorously integrate over a BRST quartet and arrive at the well known formula of MNS.
We show that double field theory naturally arises from the color-kinematic double copy of Yang-Mills theory. A precise double copy prescription for the Yang-Mills action at quadratic and cubic order is provided that yields the double field theory action in which the duality invariant dilaton has been integrated out. More precisely, at quadratic order this yields the gauge invariant double field theory, while at cubic order it yields the cubic double field theory action subject to a gauge condition that originates from Siegel gauge in string field theory.
Using the background field method, we study in a general covariant gauge the renormalization of the 6-dimensional Yang-Mills theory. This requires background gauge invariant counterterms, some of which do not vanish on shell. Such counterterms occur, even off-shell, with gauge-independent coefficients. The analysis is done at one loop order and the extension to higher orders is discussed by means of the BRST identities. We examine the behaviour of the beta function, which implies that this theory is not asymptotically free.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا