Do you want to publish a course? Click here

Renormalization of six-dimensional Yang-Mills theory in a background gauge field

124   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Using the background field method, we study in a general covariant gauge the renormalization of the 6-dimensional Yang-Mills theory. This requires background gauge invariant counterterms, some of which do not vanish on shell. Such counterterms occur, even off-shell, with gauge-independent coefficients. The analysis is done at one loop order and the extension to higher orders is discussed by means of the BRST identities. We examine the behaviour of the beta function, which implies that this theory is not asymptotically free.



rate research

Read More

The background gauge renormalization of the first order formulation of the Yang-Mills theory is studied by using the BRST identities. Together with the background symmetry, these identities allow for an iterative proof of renormalizability to all orders in perturbation theory. However, due to the fact that certain improper diagrams which violate the BRST symmetry should be removed, the renormalizability must be deduced indirectly. The recursive method involves rescalings and mixings of the fields, which lead to a renormalized effective action for the background field theory.
In the paper, within the background field method, the renormalization and the gauge dependence is studied as for an SU(2) Yang-Mills theory with multiplets of spinor and scalar fields. By extending the quantum action of the BV-formalism with an extra fermion vector field and a constant fermion parameter, the multiplicative character of the renormalizability is proven. The renormalization of all the physical parameters of the theory under consideration is shown to be gauge-independent.
The renormalization of N=1 Super Yang-Mills theory is analysed in the Wess-Zumino gauge, employing the Landau condition. An all orders proof of the renormalizability of the theory is given by means of the Algebraic Renormalization procedure. Only three renormalization constants are needed, which can be identified with the coupling constant, gauge field and gluino renormalization. The non-renormalization theorem of the gluon-ghost-antighost vertex in the Landau gauge is shown to remain valid in N=1 Super Yang-Mills. Moreover, due to the non-linear realization of the supersymmetry in the Wess-Zumino gauge, the renormalization factor of the gauge field turns out to be different from that of the gluino. These features are explicitly checked through a three loop calculation.
The spectrum of the massive CPT-odd Yang-Mills propagator with Lorentz violation is performed at tree-level. The modification is due to mass terms generated by the exigence of multiplicative renormalizability of Yang-Mills theory with Lorentz violation. The causality analysis is performed from group and front velocities for both, spacelike and timelike background tensors. It is show that, by demanding causality, it is always possible to define a physical sector for the gauge propagator. Hence, it is expected that the model is also unitary, if one takes the Faddeev-Popov ghost into account.
98 - Marco Frasca 2016
We show that, starting from known exact classical solutions of the Yang-Mills theory in three dimensions, the string tension is obtained and the potential is consistent with a marginally confining theory. The potential we obtain agrees fairly well with preceding findings in literature but here we derive it analytically from the theory without further assumptions. The string tension is in strict agreement with lattice results and the well-known theoretical result by Karabali-Kim-Nair analysis. Classical solutions depend on a dimensionless numerical factor arising from integration. This factor enters into the determination of the spectrum and has been arbitrarily introduced in some theoretical models. We derive it directly from the solutions of the theory and is now fully justified. The agreement obtained with the lattice results for the ground state of the theory is well below 1% at any value of the degree of the group.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا