Do you want to publish a course? Click here

Supersymmetry and the Nonlocal Yangian Deformation Symmetry

294   0   0.0 ( 0 )
 Added by ul
 Publication date 1992
  fields
and research's language is English




Ask ChatGPT about the research

In the quantized two-dimensional non-linear supersymmetric $sigma$-model, the supercurrent supermultiplet, which contains the energy-momentum tensor, is transformed by the nonlocal symmetry of the model into the isospin current supermultiplet. This effect incorporates supersymmetry into the known infinite-dimensional Yangian deformation symmetry of plain $sigma$-models, leads to precisely the same nontrivial extension of the two-dimensional super-Poincare group as found previously for the Poincare group, and thus determines the theorys mass spectrum. A generalization to all higher-order nonlocal charges is conjectured such that their generating function, the so-called ``master charge, has a definite Lorentz spin which depends on the spectral parameter.



rate research

Read More

265 - J.W. van Holten 2020
This paper addresses the fate of extended space-time symmetries, in particular conformal symmetry and supersymmetry, in two-dimensional Rindler space-time appropriate to a uniformly accelerated non-inertial frame in flat 1+1-dimensional space-time. Generically, in addition to a conformal co-ordinate transformation, the transformation of fields from Minkowski to Rindler space is accompanied by local conformal and Lorentz transformations of the components, which also affect the Bogoliubov transformations between the associated Fock spaces. I construct these transformations for massless scalars and spinors, as well as for the ghost and super-ghost fields necessary in theories with local conformal and supersymmetries, as arising from coupling to 2-D gravity or supergravity. Cancellation of the anomalies in Minkowski and in Rindler space requires theories with the well-known critical spectrum of particles arising in string theory in the limit of infinite strings, and is relevant for the equivalence of Minkowski and Rindler frame theories.
We investigate the structure of certain protected operator algebras that arise in three-dimensional N=4 superconformal field theories. We find that these algebras can be understood as a quantization of (either of) the half-BPS chiral ring(s). An important feature of this quantization is that it has a preferred basis in which the structure constants of the quantum algebra are equal to the OPE coefficients of the underlying superconformal theory. We identify several nontrivial conditions that the quantum algebra must satisfy in this basis. We consider examples of theories for which the moduli space of vacua is either the minimal nilpotent orbit of a simple Lie algebra or a Kleinian singularity. For minimal nilpotent orbits, the quantum algebras (and their preferred bases) can be uniquely determined. These algebras are related to higher spin algebras. For Kleinian singularities the algebras can be characterized abstractly - they are spherical subalgebras of symplectic reflection algebras - but the preferred basis is not easily determined. We find evidence in these examples that for a given choice of quantum algebra (defined up to a certain gauge equivalence), there is at most one choice of canonical basis. We conjecture that this is the case for general N=4 SCFTs.
We construct a quadratic curvature theory of gravity whose graviton propagator around the Minkowski background respects wordline inversion symmetry, the particle approximation to modular invariance in string theory. This symmetry automatically yields a corresponding gravitational theory that is nonlocal, with the action containing infinite order differential operators. As a consequence, despite being a higher order derivative theory, it is ghost-free and has no degrees of freedom besides the massless spin-$2$ graviton of Einsteins general relativity. By working in the linearised regime we show that the point-like singularities that afflict the (local) Einsteins theory are smeared out.
The statistical model of crystal melting represents BPS configurations of D-branes on a toric Calabi-Yau three-fold. Recently it has been noticed that an infinite-dimensional algebra, the quiver Yangian, acts consistently on the crystal-melting configurations. We physically derive the algebra and its action on the BPS states, starting with the effective supersymmetric quiver quantum mechanics on the D-brane worldvolume. This leads to remarkable combinatorial identities involving equivariant integrations on the moduli space of the quantum mechanics, which can be checked by numerical computations.
We classify all positive n-particle N^kMHV Yangian invariants in N=4 Yang-Mills theory with n=5k, which we call extremal because none exist for n>5k. We show that this problem is equivalent to that of enumerating plane cactus graphs with k pentagons. We use the known solution of that problem to provide an exact expression for the number of cyclic classes of such invariants for any k, and a simple rule for writing them down explicitly. As a byproduct, we provide an alternative (but equivalent) classification by showing that a product of k five-brackets with disjoint sets of indices is a positive Yangian invariant if and only if the sets are all weakly separated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا