Do you want to publish a course? Click here

Nonlocal gravity with worldline inversion symmetry

126   0   0.0 ( 0 )
 Added by Luca Buoninfante
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a quadratic curvature theory of gravity whose graviton propagator around the Minkowski background respects wordline inversion symmetry, the particle approximation to modular invariance in string theory. This symmetry automatically yields a corresponding gravitational theory that is nonlocal, with the action containing infinite order differential operators. As a consequence, despite being a higher order derivative theory, it is ghost-free and has no degrees of freedom besides the massless spin-$2$ graviton of Einsteins general relativity. By working in the linearised regime we show that the point-like singularities that afflict the (local) Einsteins theory are smeared out.



rate research

Read More

In this paper we propose a wider class of symmetries including the Galilean shift symmetry as a subclass. We will show how to construct ghost-free nonlocal actions, consisting of infinite derivative operators, which are invariant under such symmetries, but whose functional form is not simply given by exponentials of entire functions. Motivated by this, we will consider the case of a scalar field and discuss the pole structure of the propagator which has infinitely many complex conjugate poles, but satisfies the tree-level unitarity. We will also consider the possibility to construct UV complete Galilean theories by showing how the ultraviolet behavior of loop integrals can be ameliorated. Moreover, we will consider kinetic operators respecting the same symmetries in the context of linearized gravity. In such a scenario, the graviton propagator turns out to be ghost-free and the spacetime metric generated by a point-like source is nonsingular. These new nonlocal models can be seen as an infinite derivative generalization of Lee-Wick theories and open a new branch of nonlocal theories.
Gravity can be regarded as a consequence of local Lorentz (LL) symmetry, which is essential in defining a spinor field in curved spacetime. The gravitational action may admit a zero-field limit of the metric and vierbein at a certain ultraviolet cutoff scale such that the action becomes a linear realization of the LL symmetry. Consequently, only three types of term are allowed in the four-dimensional gravitational action at the cutoff scale: a cosmological constant, a linear term of the LL field strength, and spinor kinetic terms, whose coefficients are in general arbitrary functions of LL and diffeomorphism invariants. In particular, all the kinetic terms are prohibited except for spinor fields, and hence the other fields are auxiliary. Their kinetic terms, including those of the LL gauge field and the vierbein, are induced by spinor loops simultaneously with the LL gauge field mass. The LL symmetry is necessarily broken spontaneously and hence is nothing but a hidden local symmetry, from which gravity is emergent.
Recently a boundary energy-momentum tensor $T_{zz}$ has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an anomaly which is one-loop exact, $T_{zz}$ generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts $T_{zz}$.
106 - Sang Pyo Kim , Don N. Page 2019
The phase-integral and worldline-instanton methods are two widely used methods to calculate Schwinger pair-production densities in electric fields of fixed direction that depend on just one time or space coordinate in the same fixed plane of the electromagnetic field tensor. We show that for charged spinless bosons the leading results of the phase-integral method integrated up through quadratic momenta are equivalent to those of the worldline-instanton method including prefactors. We further apply the phase-integral method to fermion production and time-dependent electric fields parallel to a constant magnetic field.
A precise link is derived between scalar-graviton S-matrix elements and expectation values of operators in a worldline quantum field theory (WQFT), both used to describe classical scattering of a pair of black holes. The link is formally provided by a worldline path integral representation of the graviton-dressed scalar propagator, which may be inserted into a traditional definition of the S-matrix in terms of time-ordered correlators. To calculate expectation values in the WQFT a new set of Feynman rules is introduced which treats the gravitational field $h_{mu u}(x)$ and position $x_i^mu(tau_i)$ of each black hole on equal footing. Using these both the next-order classical gravitational radiation $langle h^{mu u}(k)rangle$ (previously unknown) and deflection $Delta p_i^mu$ from a binary black hole scattering event are obtained. The latter can also be obtained from the eikonal phase of a $2to2$ scalar S-matrix, which we show to correspond to the free energy of the WQFT.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا