Do you want to publish a course? Click here

Acceleration-Extended Galilean Symmetries with Central Charges and their Dynamical Realizations

46   0   0.0 ( 0 )
 Added by Jerzy Lukierski
 Publication date 2007
  fields
and research's language is English
 Authors J. Lukierski




Ask ChatGPT about the research

We add to Galilean symmetries the transformations describing constant accelerations. The corresponding extended Galilean algebra allows, in any dimension $D=d+1$, the introduction of one central charge $c$ while in $D=2+1$ we can have three such charges: c, theta and theta. We present nonrelativistic classical mechanics models, with higher order time derivatives and show that they give dynamical realizations of our algebras. The presence of central charge $c$ requires the acceleration square Lagrangian term. We show that the general Lagrangian with three central charges can be reinterpreted as describing an exotic planar particle coupled to a dynamical electric and a constant magnetic field.



rate research

Read More

Nonlinear realizations of the SO(4,2) group are discussed from the point of view of symmetries. Dynamical symmetry breaking is introduced. One linear and one quadratic model in curvature are constructed. Coherent states of the Klauder-Perelomov type are defined for both cases taking into account the coset geometry. A new spontaneous compactification mechanism is defined in the subspace invariant under the stability subgroup. The physical implications of the symmetry rupture in the context of non-linear realizations and direct gauging are analyzed and briefly discussed.
Continuum models for time-reversal (TR) invariant topological insulators (TIs) in $d geq 3$ dimensions are provided by harmonic oscillators coupled to certain $SO(d)$ gauge fields. These models are equivalent to the presence of spin-orbit (SO) interaction in the oscillator Hamiltonians at a critical coupling strength (equivalent to the harmonic oscillator frequency) and leads to flat Landau Level (LL) spectra and therefore to infinite degeneracy of either the positive or the negative helicity states depending on the sign of the SO coupling. Generalizing the results of Haaker et al. to $d geq 4$, we construct vector operators commuting with these Hamiltonians and show that $SO(d,2)$ emerges as the non-compact extended dynamical symmetry. Focusing on the model in four dimensions, we demonstrate that the infinite degeneracy of the flat spectra can be fully explained in terms of the discrete unitary representations of $SO(4,2)$, i.e. the {it doubletons}. The degeneracy in the opposite helicity branch is finite, but can still be explained exploiting the complex conjugate {it doubleton} representations. Subsequently, the analysis is generalized to $d$ dimensions, distinguishing the cases of odd and even $d$. We also determine the spectrum generating algebra in these models and briefly comment on the algebraic organization of the LL states w.r.t to an underlying deformed AdS geometry as well as on the organization of the surface states under open boundary conditions in view of our results.
Nonrelativistic conformal groups, indexed by l=N/2, are analyzed. Under the assumption that the mass parametrizing the central extension is nonvanishing the coadjoint orbits are classified and described in terms of convenient variables. It is shown that the corresponding dynamical system describes, within Ostrogradski framework, the nonrelativistic particle obeying (N+1)-th order equation of motion. As a special case, the Schroedinger group and the standard Newton equations are obtained for N=1 (l=1/2).
337 - J. Lukierski 2005
The six-dimensional exotic Galilean algebra in (2+1) dimensions with two central charges $m$ and $theta$, is extended when $m=0$, to a ten-dimensional Galilean conformal algebra with dilatation, expansion, two acceleration generators and the central charge $theta$. A realisation of such a symmetry is provided by a model with higher derivatives recently discussed in cite{peterwojtek}. We consider also a realisation of the Galilean conformal symmetry for the motion with a Coulomb potential and a magnetic vortex interaction. Finally, we study the restriction, as well as the modification, of the Galilean conformal algebra obtained after the introduction of the minimally coupled constant electric and magnetic fields.
We study general relativity at a null boundary using the covariant phase space formalism. We define a covariant phase space and compute the algebra of symmetries at the null boundary by considering the boundary-preserving diffeomorphisms that preserve this phase space. This algebra is the semi-direct sum of diffeomorphisms on the two sphere and a nonabelian algebra of supertranslations that has some similarities to supertranslations at null infinity. By using the general prescription developed by Wald and Zoupas, we derive the localized charges of this algebra at cross sections of the null surface as well as the associated fluxes. Our analysis is covariant and applies to general non-stationary null surfaces. We also derive the global charges that generate the symmetries for event horizons, and show that these obey the same algebra as the linearized diffeomorphisms, without any central extension. Our results show that supertranslations play an important role not just at null infinity but at all null boundaries, including non-stationary event horizons. They should facilitate further investigations of whether horizon symmetries and conservation laws in black hole spacetimes play a role in the information loss problem, as suggested by Hawking, Perry, and Strominger.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا