No Arabic abstract
We consider a superextension of the extended Jordanian twist, describing nonstandard quantization of anti-de-Sitter ($AdS$) superalgebra $osp(1|4)$ in the form of Hopf superalgebra. The super-Jordanian twisting function and corresponding basic coproduct formulae for the generators of $osp(1|4)$ are given in explicit form. The nonlinear transformation of the classical superalgebra basis not modifying the defining algebraic relations but simplifying coproducts and antipodes is proposed. Our physical application is to interpret the new super-Jordanian deformation of $osp(1|4)$ superalgebra as deformed D=4 $AdS$ supersymmetries. Subsequently we perform suitable contraction of quantum Jordanian $AdS$ superalgebra and obtain new $kappa$-deformation of D=4 Poincare superalgebra, with the bosonic sector describing the light cone $kappa$-deformation of Poincare symmetries.
We show how some classical r-matrices for the D=4 Poincare algebra can be supersymmetrized by an addition of part depending on odd supercharges. These r-matrices for D=4 super-Poincare algebra can be presented as a sum of the so-called subordinated r-matrices of super-Abelian and super-Jordanian type. Corresponding twists describing quantum deformations are obtained in an explicit form. These twists are the super-extensions of twists obtained in the paper arXiv:0712.3962.
We present a large class of supersymmetric classical r-matrices, describing the supertwist deformations of Poincare and Euclidean superalgebras. We consider in detail new family of four supertwists of N=1 Poincare superalgebra and provide as well their Euclidean counterpart. The proposed supertwists are better adjusted to the description of deformed D=4 Euclidean supersymmetries with independent left-chiral and right-chiral supercharges. They lead to new quantum superspaces, obtained by the superextension of twist deformations of spacetime providing Lie-algebraic noncommutativity of space-time coordinates. In the Hopf-algebraic Euclidean SUSY framework the considered supertwist deformations provide an alternative to the N=1/2 SUSY Seibergs star product deformation scheme.
We present the class of deformations of simple Euclidean superalgebra, which describe the supersymmetrization of some Lie algebraic noncommutativity of D=4 Euclidean space-time. The presented deformations are generated by the supertwists. We provide new explicit formulae for a chosen twisted D=4 Euclidean Hopf superalgebra and describe the corresponding quantum covariant deformation of chiral Euclidean superspace.
We use the decomposition of o(3,1)=sl(2;C)_1oplus sl(2;C)_2 in order to describe nonstandard quantum deformation of o(3,1) linked with Jordanian deformation of sl(2;C}. Using twist quantization technique we obtain the deformed coproducts and antipodes which can be expressed in terms of real physical Lorentz generators. We describe the extension of the considered deformation of D=4 Lorentz algebra to the twist deformation of D=4 Poincare algebra with dimensionless deformation parameter.
Free massless higher-superspin superfields on the N=1, D=4 anti-de Sitter superspace are introduced. The linearized gauge transformations are postulated. Two families of dually equivalent gauge-invariant action functionals are constructed for massless half-integer-superspin s+1/2 (s >= 2) and integer-superspin s (s >= 1) superfields. For s=1, one of the formulations for half-integer superspin multiplets reduces to linearized minimal N=1 supergravity with a cosmological term, while the other is the lifting to the anti-de Sitter superspace of linearized non-minimal n=-1 supergravity.