No Arabic abstract
Free massless higher-superspin superfields on the N=1, D=4 anti-de Sitter superspace are introduced. The linearized gauge transformations are postulated. Two families of dually equivalent gauge-invariant action functionals are constructed for massless half-integer-superspin s+1/2 (s >= 2) and integer-superspin s (s >= 1) superfields. For s=1, one of the formulations for half-integer superspin multiplets reduces to linearized minimal N=1 supergravity with a cosmological term, while the other is the lifting to the anti-de Sitter superspace of linearized non-minimal n=-1 supergravity.
We consider a superextension of the extended Jordanian twist, describing nonstandard quantization of anti-de-Sitter ($AdS$) superalgebra $osp(1|4)$ in the form of Hopf superalgebra. The super-Jordanian twisting function and corresponding basic coproduct formulae for the generators of $osp(1|4)$ are given in explicit form. The nonlinear transformation of the classical superalgebra basis not modifying the defining algebraic relations but simplifying coproducts and antipodes is proposed. Our physical application is to interpret the new super-Jordanian deformation of $osp(1|4)$ superalgebra as deformed D=4 $AdS$ supersymmetries. Subsequently we perform suitable contraction of quantum Jordanian $AdS$ superalgebra and obtain new $kappa$-deformation of D=4 Poincare superalgebra, with the bosonic sector describing the light cone $kappa$-deformation of Poincare symmetries.
We test the robustness of the conditions required for the existence of (supersymmetric) warped flux anti-de Sitter, de Sitter, and Minkowski backgrounds in supergravity theories using as examples suitable foliations of anti-de Sitter spaces. We find that there are supersymmetric de Sitter solutions in supergravity theories including maximally supersymmetric ones in 10- and 11-dimensional supergravities. Moreover, warped flux Minkowski backgrounds can admit Killing spinors which are not Killing on the Minkowski subspace and therefore cannot be put in a factorized form.
We consider a four dimensional generalized Wess-Zumino model formulated in terms of an arbitrary K{a}hler potential $mathcal{K}(Phi,bar{Phi})$ and an arbitrary chiral superpotential $mathcal{W}(Phi)$. A general analysis is given to describe the possible interactions of this theory with external higher spin gauge superfields of the ($s+1,s+1/2$) supermultiplet via higher spin supercurrents. It is shown that such interactions do not exist beyond supergravity $(sgeq2)$ for any $mathcal{K}$ and $mathcal{W}$. However, we find three exceptions, the theory of a free massless chiral, the theory of a free massive chiral and the theory of a free chiral with linear superpotential. For the first two, the higher spin supercurrents are known and for the third one we provide the explicit expressions. We also discuss the lower spin supercurrents. As expected, a coupling to (non-minimal) supergravity ($s=1$) can always be found and we give the generating supercurrent and supertrace for arbitrary $mathcal{K}$ and $mathcal{W}$. On the other hand, coupling to the vector supermultiplet ($s=0$) is possible only if $mathcal{K}=mathcal{K}(bar{Phi}Phi)$ and $mathcal{W}=0$.
Maximally symmetric curved-brane solutions are studied in dilatonic braneworld models which realise the self-tuning of the effective four-dimensional cosmological constant. It is found that no vacua in which the brane has de Sitter or anti-de Sitter geometry exist, unless one modifies the near-boundary asymptotics of the bulk fields. In the holographic dual picture, this corresponds to coupling the UV CFT to a curved metric (possibly with a defect). Alternatively, the same may be achieved in a flat-space QFT with suitable variable scalar sources. With these ingredients, it is found that maximally symmetric, positive and negative curvature solutions with a stabilised brane position generically exist. The space of such solutions is studied in two different types of realisations of the self-tuning framework. In some regimes we observe a large hierarchy between the curvature on the brane and the boundary UV CFT curvature. This is a dynamical effect due to the self-stabilisation mechanism. This setup provides an alternative route to realising de Sitter space in string theory.
We describe a five-dimensional analogue of Wigners operator equation ${mathbb W}_a = lambda P_a$, where ${mathbb W}_a $ is the Pauli-Lubanski vector, $P_a$ the energy-momentum operator, and $lambda$ the helicity of a massless particle. Higher dimensional generalisations are also given.