Do you want to publish a course? Click here

Brane solutions of a spherical sigma model in six dimensions

61   0   0.0 ( 0 )
 Added by Antonios Papazoglou
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore solutions of six dimensional gravity coupled to a non-linear sigma model, in the presence of co-dimension two branes. We investigate the compactifications induced by a spherical scalar manifold and analyze the conditions under which they are of finite volume and singularity free. We discuss the issue of single-valuedness of the scalar fields and provide some special embedding of the scalar manifold to the internal space which solves this problem. These brane solutions furnish some self-tuning features, however they do not provide a satisfactory explanation of the vanishing of the effective four dimensional cosmological constant. We discuss the properties of this model in relation with the self-tuning example based on a hyperbolic sigma model.



rate research

Read More

The supersymmetrization of curvature squared terms is important in the study of the low-energy limit of compactified superstrings where a distinguished role is played by the Gauss-Bonnet combination, which is ghost-free. In this letter, we construct its off-shell ${cal N} = (1, 0)$ supersymmetrization in six dimensions for the first time. By studying this invariant together with the supersymmetric Einstein-Hilbert term we confirm and extend known results of the $alpha$-corrected string theory compactified to six dimensions. Finally, we analyze the spectrum about the ${rm AdS}_3times{rm S}^3$ solution.
We consider a six-dimensional Einstein-Maxwell system compactified in an axisymmetric two-dimensional space with one capped regularized conical brane of codimension one. We study the cosmological evolution which is induced on the regularized brane as it moves in between known static bulk and cap solutions. Looking at the resulting Friedmann equation, we see that the brane cosmology at high energies is dominated by a five-dimensional rho^2 energy density term. At low energies, we obtain a Friedmann equation with a term linear to the energy density with, however, negative coefficient in the small four-brane radius limit (i.e. with negative effective Newtons constant). We discuss ways out of this problem.
Gravitational backgrounds in d+2 dimensions have been proposed as holographic duals to Lifshitz-like theories describing critical phenomena in d+1 dimensions with critical exponent zgeq 1. We numerically explore a dilaton-Einstein-Maxwell model admitting such backgrounds as solutions. Such backgrounds are characterized by a temperature T and chemical potential mu, and we find how to embed these solutions into AdS for a range of values of z and d. We find no thermal instability going from the (Tllmu) to the (Tggmu) regimes, regardless of the dimension, and find that the solutions smoothly interpolate between the Lifshitz-like behaviour and the relativistic AdS-like behaviour. We exploit some conserved quantities to find a relationship between the energy density E, entropy density s, and number density n, E=frac{d}{d+1}(Ts+nmu), as is required by the isometries of AdS_{d+2}. Finally, in the (Tllmu) regime the entropy density is found to satisfy a power law s propto c T^{d/z} mu^{(z-1)d/z}, and we numerically explore the dependence of the constant c, a measure of the number of degrees of freedom, on d and z.
General $mathcal{N}=(1,0)$ supergravity-matter systems in six dimensions may be described using one of the two fully fledged superspace formulations for conformal supergravity: (i) $mathsf{SU}(2)$ superspace; and (ii) conformal superspace. With motivation to develop rigid supersymmetric field theories in curved space, this paper is devoted to the study of the geometric symmetries of supergravity backgrounds. In particular, we introduce the notion of a conformal Killing spinor superfield $epsilon^alpha$, which proves to generate extended superconformal transformations. Among its cousins are the conformal Killing vector $xi^a$ and tensor $zeta^{a(n)}$ superfields. The former parametrise conformal isometries of supergravity backgrounds, which in turn yield symmetries of every superconformal field theory. Meanwhile, the conformal Killing tensors of a given background are associated with higher symmetries of the hypermultiplet. By studying the higher symmetries of a non-conformal vector multiplet we introduce the concept of a Killing tensor superfield. We also analyse the problem of computing higher symmetries for the conformal dAlembertian in curved space and demonstrate that, beyond the first-order case, these operators are defined only on conformally flat backgrounds.
In this paper we discuss the properties of the general covariant angular momentum of a five-dimensional brane-world model. Through calculating the total angular momentum of this model, we are able to analyze the properties of the total angular momentum in the inflationary RS model. We show that the space-like components of the total angular momentum of are all zero while the others are non-zero, which agrees with the results from ordinary RS model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا