Do you want to publish a course? Click here

Gauss-Bonnet supergravity in six dimensions

63   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The supersymmetrization of curvature squared terms is important in the study of the low-energy limit of compactified superstrings where a distinguished role is played by the Gauss-Bonnet combination, which is ghost-free. In this letter, we construct its off-shell ${cal N} = (1, 0)$ supersymmetrization in six dimensions for the first time. By studying this invariant together with the supersymmetric Einstein-Hilbert term we confirm and extend known results of the $alpha$-corrected string theory compactified to six dimensions. Finally, we analyze the spectrum about the ${rm AdS}_3times{rm S}^3$ solution.



rate research

Read More

General $mathcal{N}=(1,0)$ supergravity-matter systems in six dimensions may be described using one of the two fully fledged superspace formulations for conformal supergravity: (i) $mathsf{SU}(2)$ superspace; and (ii) conformal superspace. With motivation to develop rigid supersymmetric field theories in curved space, this paper is devoted to the study of the geometric symmetries of supergravity backgrounds. In particular, we introduce the notion of a conformal Killing spinor superfield $epsilon^alpha$, which proves to generate extended superconformal transformations. Among its cousins are the conformal Killing vector $xi^a$ and tensor $zeta^{a(n)}$ superfields. The former parametrise conformal isometries of supergravity backgrounds, which in turn yield symmetries of every superconformal field theory. Meanwhile, the conformal Killing tensors of a given background are associated with higher symmetries of the hypermultiplet. By studying the higher symmetries of a non-conformal vector multiplet we introduce the concept of a Killing tensor superfield. We also analyse the problem of computing higher symmetries for the conformal dAlembertian in curved space and demonstrate that, beyond the first-order case, these operators are defined only on conformally flat backgrounds.
139 - Chen-Hao Wu , Ya-Peng Hu , Hao Xu 2021
Einstein-Gauss-Bonnet theory is a string-generated gravity theory when approaching the low energy limit. By introducing the higher order curvature terms, this theory is supposed to help to solve the black hole singularity problem. In this work, we investigate the evaporation of the static spherically symmetric neutral AdS black holes in Einstein-Gauss-Bonnet gravity in various spacetime dimensions with both positive and negative couping constant $alpha$. By summarizing the asymptotic behavior of the evaporation process, we find the lifetime of the black holes is dimensional dependent. For $alpha>0$, in $Dgeqslant6$ cases, the black holes will be completely evaporated in a finite time, which resembles the Schwarzschild-AdS case in Einstein gravity. While in $D=4,5$ cases, the black hole lifetime is always infinite, which means the black hole becomes a remnant in the late time. Remarkably, the cases of $alpha>0, D=4,5$ will solve the terminal temperature divergent problem of the Schwarzschild-AdS case. For $alpha<0$, in all dimensions, the black hole will always spend a finite time to a minimal mass corresponding to the smallest horizon radius $r_{min}=sqrt{2|alpha|}$ which coincide with an additional singularity. This implies that there may exist constraint conditions to the choice of coupling constant.
257 - Y. Brihaye , T. Delsate , E. Radu 2010
We construct uniform black-string solutions in Einstein-Gauss-Bonnet gravity for all dimensions $d$ between five and ten and discuss their basic properties. Closed form solutions are found by taking the Gauss-Bonnet term as a perturbation from pure Einstein gravity. Nonperturbative solutions are constructed by solving numerically the equations of the model. The Gregory-Laflamme instability of the black strings is explored via linearized perturbation theory. Our results indicate that new qualitative features occur for $d=6$, in which case stable configurations exist for large enough values of the Gauss-Bonnet coupling constant. For other dimensions, the black strings are dynamically unstable and have also a negative specific heat. We argue that this provides an explicit realization of the Gubser-Mitra conjecture, which links local dynamical and thermodynamic stability. Nonuniform black strings in Einstein-Gauss-Bonnet theory are also constructed in six spacetime dimensions.
We investigate the neutral AdS black-hole solution in the consistent $Drightarrow4$ Einstein-Gauss-Bonnet gravity proposed in [K. Aoki, M.A. Gorji, and S. Mukohyama, Phys. Lett. B {bf 810}, 135843 (2020)] and construct the gravity duals of ($2+1$)-dimensional superconductors with Gauss-Bonnet corrections in the probe limit. We find that the curvature correction has a more subtle effect on the scalar condensates in the s-wave superconductor in ($2+1$)-dimensions, which is different from the finding in the higher-dimensional superconductors that the higher curvature correction makes the scalar hair more difficult to be developed in the full parameter space. However, in the p-wave case, we observe that the higher curvature correction always makes it harder for the vector condensates to form in various dimensions. Moreover, we note that the higher curvature correction results in the larger deviation from the expected relation in the gap frequency $omega_g/T_capprox 8$ in both ($2+1$)-dimensional s-wave and p-wave models.
Recently it has been argued that in Einstein gravity Anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass/energy content of the spacetime is too small, thereby restoring the stability of AdS spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا